2017 Queensland Urban Drainage Manual - Hydrology Chapter 4 PDF

Summary

This document is a chapter from a manual on urban drainage design. It explains catchment hydrology and appropriate hydrologic methods to design drainage systems. The chapter also covers choosing a hydrologic method, and specifically details the rational method for use in urban and rural catchment analysis.

Full Transcript

  4.   Catchment  hydrology   4.1   Introduction   When  undertaking  a  hydrologic  analysis  of  a  drainage  catchment  for  the  purpose  of  designing  a   drainage  system,  the  ‘intent’  should  be  to:     select  and  utilise  appropriate  hydrologic  methods     take...

  4.   Catchment  hydrology   4.1   Introduction   When  undertaking  a  hydrologic  analysis  of  a  drainage  catchment  for  the  purpose  of  designing  a   drainage  system,  the  ‘intent’  should  be  to:     select  and  utilise  appropriate  hydrologic  methods     take  all  necessary  steps  to  understand  the  appropriate  application  of  the  chosen  hydrologic   methods  with  respect  to  the  catchment  conditions;;  including  the  selection  and  usage  of  key   variables—in  this  respect,  this  Manual  must  not  be  treated  as  a  ‘prescriptive  standard’  (refer  to   the  Glossary,  or  the  Professional  Engineers  Act,  2002)     apply  all  hydrologic  methods  in  an  manner  that  best  allows  the  determination  of  appropriate   design  discharges  for  the  drainage  catchment  being  considered     determine  a  design  discharge  that  best  protects  public  and  private  assets  throughout  the   expected  working  life  of  the  drainage  system  being  designed;;  that  is  an  appropriate  ‘worst   case’  condition,  whether  such  a  case  exists  at  the  beginning,  middle  or  end  of  its  expected   working  life,  or  at  any  stage  of  a  staged  development.     Achieving  the  intent  of  the  last  dot  point  can  be  complicated  by  the  difficulties  of  assessing  the   likely  future  drainage  conditions  of  an  upstream  catchment  when  such  ‘future’  conditions  are   outside  the  control,  and  possible  knowledge  of,  the  drainage  designer.     Unless  there  is  other  more  reliable  information,  designers  may  reasonably  assume  that  the  future   drainage  conditions  of  an  upstream  catchment  (including  land  use  category  and  the  utilisation  of   flow  mitigation  systems)  are  those  defined  by  the  local  government,  typically  within:     the  current  Planning  Scheme     an  approved  Local  Government  Infrastructure  Plan  (LGIP)     current  stormwater/drainage  codes  used  in  the  assessment  of  development  applications.     If  the  purpose  of  the  catchment  hydrology  is  to  be  used  to  set  minimum  fill  or  floor  levels,  then  the   nominated  peak  discharge  must  consider  the  worst  case  scenario.  It  is  usually  assumed  that  this  is   represented  by  a  fully  developed  catchment;;  however,  circumstances  can  exist  where  current  peak   discharges  and  flood  levels  could  exceed  expected  future  conditions.  For  example,  when  a  major   regional  stormwater  detention/retention  system  exists  within  a  planning  scheme,  but  as  yet  has  not   been  built.     Best  practice  drainage  design  usually  requires  the  designs  to  cater  for  flows  discharged  from  a   ‘fully  developed  catchment’.  If  such  conditions  are  not  adequately  defined  within  a  planning   scheme  or  code,  then  the  designer  should  assume  the  following  catchment  conditions,  but  only  so   far  as  they  do  not  contradict  the  requirements  outlined  within  an  approved  planning  scheme  or   code:     Ultimate  land  use  in  accordance  with  the  current  Planning  Scheme  or  Strategic  Plan  for  the   catchment.     The  incorporation  of  flow  attenuation  systems  within  the  upstream  catchment  (e.g.  flow   detention  and  WSUD  principles)  only  if  such  flow  attenuation  mechanisms  are  considered   mandatory  within  the  current  Planning  Scheme  or  Strategic  Plan.     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­1         The  incorporation  of  existing  surface  storages  (e.g.  detention  systems  and  hydraulic  chokes)   only  if  the  sustainability  (longevity)  of  these  surface  storages  is  protected  by  appropriate   measures;;  for  example,  the  flood  storage  system  is  contained  within  a  drainage  easement  or   reserve.     Within  the  limits  of  reasonable  investigation  (relative  to  the  design  risk),  the  drainage  designer   must  not  take  into  consideration  any  surface  storage  or  flow  attenuation  system  that  has  the   following  characteristics:   −   surface  storage  that  is  contained  within  land  not  under  the  control  of  an  easement,  reserve   or  local  government  Planning  Scheme   −   surface  storage  that  primarily  results  from  ‘hydraulic  choking’  caused  by  an  undersized   drainage  system  that  does  not  comply  with  current  design  standards  (i.e.  any  surface   storage  that  could  reasonably  be  expected  to  be  removed  once  the  catchment’s  drainage   system  is  upgraded  to  current  design  standards)   −   surface  storage  that  consists  of  flooded  land  (e.g.  existing  urban    areas)  where  it  is   reasonable  to  expect  that  future  flood  mitigation  works  will  remove,  or  at  least  substantially   reduce,  such  flooding  (e.g.  flood  mitigation  works  identified  within  Master  Drainage   Planning).     The  drainage  designer  must  not  assume,  without  appropriate  investigation,  that  upstream   inflows  will  not  be  altered  from  pre-­development  conditions  once  the  catchment  is  fully   developed.     The  last  dot  point  refers  to  the  realisation  that  it  is  unreasonable  to  expect  that  the  full  development   of  a  large  creek  catchment  will  not  result  in  at  least  some  change  (usually  an  increase)  in  peak   discharges  and  runoff  volumes  within  the  lower  catchment.  Even  if  best  practice  stormwater   management  principles  are  applied  throughout  the  catchment,  an  increase  in  peak  discharges  can   still  occur  because:     there  will  be  increases  in  runoff  volume  (which  are  generally  impossible  to  fully  mitigate)     stormwater  detention  systems  established  on  privately  developed  land  typically  do  not   compensate  for  increased  flows  resulting  from  associated  state  and  council  infrastructure       stormwater  detention  systems  are  usually  designed  not  to  increase  flows  resulting  from  design   storms,  not  real  storms  (which  typically  have  a  longer  ‘rising  limb’  and  runoff  volume)     the  upgrading  of  existing  ‘below  standard’  infrastructure  (e.g.  pipes  and  culverts)  can  reduce   surface  storage  within  the  upper  catchment     flood  mitigation  works  may  have  been  carried  out  along  the  waterway  that  reduce  the  effective   in-­channel  flood  storage.     Further  discussion  on  the  limitations  of  modern  flow  mitigation  systems  is  provided  in  Chapter  5  –   Detention/retention  systems.   4.2   Choice  of  hydrologic  method   When  choosing  a  hydrologic  method  the  ‘intent’  must  be  to  choose  an  analytical  procedure  that:     is  appropriate  for  the  catchment  conditions  and  the  required  degree  of  accuracy     is  capable  of  assessing  a  critical  ‘change’  in  a  specific  catchment  condition  when  the  modelling   is  required  to  assess  the  likely  impact  of  a  proposed  development  (e.g.  assessment  of  pre-­  and   post-­development  runoff,  or  the  augmentation  of  a  drainage  channel)     is  capable  of  being  reviewed  by  any  regulator,  or  a  nominated  third  party,  that  is  required  to   review  the  hydrology/development  proposal.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­2       4.2.1   Rational  Method   Utilisation  of  the  Rational  Method,  as  described  within  the  Manual,  may  be  considered  appropriate   for  the  following  uses  and  catchment  conditions:     determination  of  peak  design  discharge  for  urban  catchments  of  less  than  500  hectares  that  do   not  incorporate  detention  storage  facilities     estimation  of  peak  discharge  for  rural  catchments  of  less  than  25  km 2  (refer  to  Section  4.6.11   for  reference  to  other  documented  procedures  for  the  assessment  of  rural  catchments)     determination  of  peak  design  discharge  in  conditions  where  the  bulk  of  the  stormwater  runoff  is   contained  within  a  drainage  system  (i.e.  conduit,  channel  or  overland  flow  path)  that  does  not   provide  significant  flow-­attenuating  flood  storage  (i.e.  the  nominated  ‘time  of  concentration’   approximately  equals  the  actual  travel  time  of  the  flow,  which  approximately  equals  the  travel   time  of  the  ‘flood  wave  peak’)     as  a  ‘checking  tool’  (not  calibration)  of  numerical  models  developed  for  small  ungauged   catchments  (i.e.  checking  for  potential  gross  errors)     the  design  of  cross  drainage  structures  (e.g.  culverts),  where  the  consequences  of  errors  in  the   determination  of  a  design  discharge  are  not  significant  (e.g.  overtopping  flows  do  not  threaten   the  flood  immunity  of  adjacent  buildings)     the  design  of  local  government  drainage  systems  where  it  is  not  considered  feasible  to  develop   a  comprehensive  runoff-­routing  model     conducting  local  government  drainage  investigations  (e.g.  investigating  drainage  complaints)     the  design  of  temporary  drainage,  erosion  and  sediment  control  measures  in  association  with   the  preparation  of  construction  site  Erosion  and  Sediment  Control  Plans     the  design  of  spillways  (bywash)  for  minor  farm  dams.     Utilisation  of  the  Rational  Method  for  the  determination  of  ‘peak’  stormwater  discharges  should  not   be  considered  appropriate  for  use  in  the  following  circumstances:     urban  catchments  with  an  area  greater  than  500  hectares     determination  of  design  discharges  for  the  determination  of  minimum  flood  level  for  new   buildings  (minimum  flood  levels  should  be  based  on  appropriate  runoff-­routing  modelling)     determination  of  design  hydrographs  or  runoff  volumes  for  flood  mapping  or  the  analysis  of   flood  storage  systems     the  analysis  or  design  of  those  components  of  the  drainage  system  which  are  volume-­based,   such  as  detention  and  retention  basins  (it  is  noted  that  some  local  authorities  may  have  design   procedures  for  small  on-­site  detention  systems  which  are  not  volume-­based,  but  instead  are   based  solely  on  pre  and  post-­development  peak  discharges)     determination  of  peak  discharges  associated  with  historical  (real)  storms     assessment  of  unusually  shaped  drainage  catchments  (refer  to  Section  4.7)     assessment  of  catchments  containing  significant,  isolated,  areas  of  vastly  different  hydrologic   characteristics,  such  as  a  catchment  with  an  upper  forested  sub-­catchment  and  a  lower   urbanised  sub-­catchment     assessment  of  catchments  with  significant  floodplain  storage,  detention  basins,  or  catchments   with  wide-­spread  usage  of  on-­site  detention  systems.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­3       4.2.2   Utilisation  of  the  Rational  Method  within  complex  catchments   The  Rational  Method  is  a  simple  hydrologic  method  with  a  modest  degree  of  accuracy  compared  to   numerical  runoff-­routing  models;;  however,  it  is  through  this  ‘simplicity’  that  the  Rational  Method  is   able  to  avoid  the  gross  errors  that  can  occur  from  time  to  time  in  non-­calibrated  numerical  models.   It  is  for  this  reason  that  some  practitioners  choose  to  use  the  Rational  Method  as  a  means  of   checking  (not  calibrating)  numerical  models.     There  are  numerous  catchment  conditions  where  use  of  the  Rational  Method  would  be  considered   inappropriate.  There  are  other  conditions  where  the  application  of  the  Rational  Method  requires   special  consideration  and  adaptation.  The  following  list  provides  examples  of  catchment  conditions   where  care  must  be  applied  in  the  application  of  the  Rational  Method.  Further  discussion  and   detailed  recommendations  are  provided  within  the  Background  Notes.     An  overland  flow  path  passing  through  low  gradient  land,  oval  or  park  that  provides  significant   surface  storage  during  major  storms  (i.e.  acting  as  an  unofficial  detention  basin).     Catchments  where  the  travel  time  for  the  minor  drainage  system  is  significantly  different  from   that  of  the  major  drainage  system.     The  upstream  catchment  is  zoned  for  urban  use,  but  is  currently  undeveloped.     Catchments  containing  significant  on-­site  stormwater  detention  (OSD).     Sub-­catchments  containing  flow-­attenuating  surface  storage  systems  (e.g.  lakes,  wetlands  or   detention/retention  basins).     Catchments  containing  water  supply  dams  or  weirs.     Catchments  containing  private  dams  (e.g.  farm  dams).     Urban  catchments  with  an  area  greater  than  500  ha.     Catchments  containing  significant  isolated  areas  of  land  exhibiting  highly  diverse  stormwater   runoff  characteristics  (e.g.  land  with  significantly  different  discharge  coefficients  and  runoff   velocity).     Partially  urbanised,  ungauged  catchments.     Irregular  shaped  catchments  (also  refer  to  Section  4.7).     Catchments  with  a  significant  change  in  catchment  slope  or  stream  slope.   4.2.3   Runoff-­routing  models     The  following  recommendations  are  provided  in  relation  to  the  use  of  numerical  models  for  the   design  of  urban  drainage  systems.  For  guidance  on  the  use  of  numerical  models  for  the  purpose  of   flood  estimation  and  flood  mapping,  refer  to  the  latest  version  of  Australian  Rainfall  and  Runoff.     Preference  should  be  given  to  the  use  of  computer-­based,  runoff-­routing,  numerical  models  when   analysing  the  following  drainage  conditions:     urban  catchments  with  an  area  greater  than  500  hectares     determination  of  minimum  flood  level  for  new  buildings       the  analysis  or  design  of  drainage  systems  that  are  volume-­dependent,  such  as  detention  and   retention  basins     determination  of  peak  discharges  associated  with  historical  (real)  storms     assessment  of  complex  drainage  catchments  (refer  to  Section  4.7).     When  utilising  computer-­based  runoff-­routing  models  to  analyse  urban  drainage  systems,  the   following  practices  should  not  be  adopted:   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­4         the  extraction  of  peak  discharges  at  model  nodes  that  have  fewer  than  5  contributing  sub-­ catchments,  unless  the  model’s  user  manual  identifies  that  fewer  sub-­catchments  are   acceptable  (e.g.  XP-­RAFTS)     the  adoption  of  a  ‘critical  storm  duration’  based  on  the  assessed  Rational  Method  ‘time  of   concentration’;;  these  are  two  different  hydrologic  terms  that  should  not  be  interchanged       the  adoption,  within  ‘design  storm’  runs,  of  those  initial  loss  and  continuing  loss  values   determined  from  historical  storm  calibration  runs  without  appropriate  consideration  of  the  likely   effects  of  pre-­storm  rainfall.     A  critical  aspect  of  runoff-­routing  modelling  is  the  choice  of  loss  rates  (e.g.  initial  and  continuing   losses).  Designers  should  refer  to  the  latest  version  of  Australian  Rainfall  and  Runoff  for  guidance   on  the  choice  of  loss  models  and  initial  and  continuing  loss  rates.  A  short  discussion  on  the   selection  of  loss  rates  is  also  provided  within  the  Background  Notes  for  this  chapter.   4.2.4   Regional  flood  frequency  analysis   The  latest  edition  of  Australian  Rainfall  and  Runoff  provides  guidance  on  the  use  of  regional  flood   methods  for  ungauged  rural  streams.  These  equations  are  expected  to  be  suitable  for  small  to   medium  sized  (8  to  1000  km2)  rural  catchments  (<  10%  urban)  for  both  coastal  and  semi-­arid   regions  of  Queensland.     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­5       4.3   The  Rational  Method   In  its  general  form  (using  the  non-­standard  units  of  Q  (m3/s),  I (m/s)  and  A  (m2))  the  Rational   Method  is  based  on  the  following  formula:     Q  =  C  .  I  .  A   (4.1)     For  design  purposes  the  more  common  units  are  used;;  Q  (m3/s),  I (mm/hr)  and  A  (ha):       Qy  =  (Cy  .  tIy  .  A)/360   (4.2)     where:     Qy   =   peak  flow  rate  (m3/s)  for  annual  exceedence  probability  (AEP)  of  1  in  ‘y’  years     Cy   =   coefficient  of  discharge  (dimensionless)  for  AEP  of  1  in  ‘y’  years     A   =   area  of  catchment  (ha)   t   Iy   =   average  rainfall  intensity  (mm/h)  for  a  design  duration  of  ‘t’  hours  and  an  AEP  of  1   in  ‘y’  years     t   =   the  nominal  design  storm  duration  as  defined  by  the  time  of  concentration  (tc)     The  value  ‘360’  is  a  conversion  factor  to  suit  the  units  used.     Calculation  of  the  flow  at  the  various  inlets  and  junctions  along  the  drainage  line  is  carried  out  from   the  top  of  the  system  progressively  downstream.  The  design  discharge  at  any  given  location  is  not   the  sum  of  the  individual  sub-­area  peak  discharges,  but  is  a  value  calculated  for  that  location   based  on  the  assessed  time  of  concentration  at  that  location.     4.4   Catchment  area   When  determining  the  catchment  area,  drainage  designers  must:     utilise  a  catchment  plan  that  best  represents  the  historical,  existing  or  future  conditions  as  the   case  may  be     give  appropriate  consideration  to  the  likelihood  that  the  catchment  area  for  the  minor  drainage   system  may  be  different  from  that  of  the  major  drainage  system     give  appropriate  consideration  to  the  possibility  that  land  contouring  and  piped  drainage   systems  may  extend  the  catchment  boundary  beyond  the  natural  catchment  boundary     give  appropriate  consideration  to  the  possibility  that  roof  water  from  a  given  property  may   discharge  to  a  different  location  from  that  of  the  ground  level  runoff     give  appropriate  consideration  to  the  potential  effects  of  constructed  flow  diversion  systems,   such  as  property  fences  and  roads,  that  may  extend  the  catchment  boundary  beyond  the   natural  catchment  boundary     give  appropriate  consideration  to  proposed  future  road  layouts  that  may  extend  or  reduce  the   catchment  boundary  beyond  the  natural  catchment  boundary     give  appropriate  consideration  to  the  likelihood  that  road  upgrades  or  resurfacing  could  alter   the  direction  of  overland  flow  paths  (e.g.  a  high-­crown  road  is  replaced  by  a  low-­crown  road,  or   one  with  two-­way  fall  replaced  with  one-­way  fall  or  vice  versa).     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­6       4.5   Coefficient  of  discharge   The  coefficient  of  discharge,  ‘C’  as  used  within  the  Rational  Method  should  not  be  confused  with   the  volumetric  runoff  coefficient  ‘CV’,  which  is  a  direct  ratio  of  total  runoff  to  total  rainfall.     The  nominated  coefficient  of  discharge  must  account  for  the  future  development  of  the  catchment   as  depicted  in  the  current  Planning  Scheme,  with  appropriate  consideration  of  the  authority’s   current  detention/flow-­control  policies.  The  recommended  steps  for  determining  the  coefficient  are   listed  below:     determine  the  fraction  impervious  (fi)  for  the  catchment  under  study  from  Table  4.5.1     determine  the  1  hour  rainfall  intensity  (1I10)  for  the  10  year  ARI  (10%  AEP)  at  the  locality     determine  the  frequency  factor  (Fy)  for  the  required  design  storm  from  Table  4.5.2.     determine  the  10  year  discharge  coefficient  (C10)  value  from  tables  4.5.3  and  4.5.4.     multiply  the  C10  value  by  the  frequency  factor  (Fy)  to  determine  the  coefficient  of  runoff  for  the   design  storm  (Cy).     Cy  =  Fy  .  C10   (4.3)     It  is  recommended  that  the  value  of  Cy  should  be  limited  to  unity  (1.0)  within  urban  areas.     Table  4.5.1  –  Fraction  impervious  vs.  development  category   Development  category   Fraction  impervious  (fi)   Central  business  district   1.00   Commercial,  local  business,  neighbouring  facilities,  service  industry,   0.90   general  industry,  home  industry   Significant  paved  areas  e.g.  roads  and  car  parks   0.90   Urban  residential  –  high  density   0.70  to  0.90   Urban  residential  –  low  density  (including  roads)   0.45  to  0.85   Urban  residential  –  low  density  (excluding  roads)   0.40  to  0.75   Rural  residential   0.10  to  0.20   Open  space  and  parks  etc.   0.00   Notes:   1.   The  fraction  impervious  should  be  determined  for  each  development.  Local  governments  may  specify   default  values.   2.   Typically  for  urban  residential  high  density  developments:    townhouse  type  development   fi  =  0.7    multi-­unit  dwellings  >  20  dwellings  per  hectare   fi  =  0.85    high-­rise  residential  development   fi  =  0.9   3.   In  urban  residential  low  density  areas  fi  will  vary  depending  upon  road  width,  allotment  size,  house  size   and  extent  of  paths,  driveways  etc.   4.   Refer  to  Table  7.3.3  for  the  definition  of  development  categories  as  used  in  this  Manual.     Notes  (tables  4.5.3  &  4.5.4,  over  page):   1 I10   =   One  hour  rainfall  intensity  for  a  1  in  10  year  ARI  (10%  AEP)   C10   =   Coefficient  of  discharge  for  a  1  in  10  year  ARI  (10%  AEP)   fi   =   Fraction  impervious   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­7         Table  4.5.2  –  Table  of  frequency  factors   AEP  (%)   ARI  (years)   Frequency  factor  (Fy)   63%   1   0.80   39%   2   0.85   18%   5   0.95   10%   10   1.00   5%   20   1.05   2%   50   1.15   1%   100   1.20     Table  4.5.3  –  Table  of  C10  values   Intensity   Fraction  impervious  fi   (mm/hr)   1 I10   0.00   0.20   0.40   0.60   0.80   0.90   1.00   39-­44   0.44   0.55   0.67   0.78   0.84   0.90   Refer  to  Table  4.5.4   45-­49   0.49   0.60   0.70   0.80   0.85   0.90   50-­54   0.55   0.64   0.72   0.81   0.86   0.90   55-­59   0.60   0.68   0.75   0.83   0.86   0.90   60-­64   0.65   0.72   0.78   0.84   0.87   0.90   65-­69   0.71   0.76   0.80   0.85   0.88   0.90   70-­90   0.74   0.78   0.82   0.86   0.88   0.90   Refer  to  notes  on  previous  page.     Table  4.5.4  –  C10  values  for  zero  fraction  impervious     Medium  density  bush,  or   Light  cover  bushland,  or   Land   Good  grass  cover,  or   Poor  grass  cover,  or   Dense  bushland   description   High  density  pasture,  or   Low  density  pasture,  or   Zero  tillage  cropping   Low  cover  bare  fallows   Intensity   Soil  permeability   Soil  permeability   Soil  permeability   (mm/hr)  1I10   High   Med   Low   High   Med   Low   High   Med   Low   39–44   0.08   0.24   0.32   0.16   0.32   0.40   0.24   0.40   0.48   45–49   0.10   0.29   0.39   0.20   0.39   0.49   0.29   0.49   0.59   50–54   0.12   0.35   0.46   0.23   0.46   0.58   0.35   0.58   0.69   55–59   0.13   0.40   0.53   0.27   0.53   0.66   0.40   0.66   0.70   60–64   0.15   0.44   0.59   0.30   0.59   0.70   0.44   0.70   0.70   65–69   0.17   0.50   0.66   0.33   0.66   0.70   0.50   0.70   0.70   70–90   0.18   0.53   0.70   0.35   0.70   0.70   0.53   0.70   0.70    Developed  from  Department  of  Natural  Resources  and  Mines  (2004);;  see  Background  Notes  for  further   discussion.  These  coefficients  are  not  suitable  for  soils  compacted  by  construction  activities.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­8       4.6   Time  of  concentration  (Rational  Method)   4.6.1   General   Time  of  concentration  (tc)  is  a  catchment  parameter  that  is  used  in  the  selection  of  an  appropriate   average  rainfall  intensity  (tIy).  The  time  of  concentration  of  a  catchment  is  defined  as  the  time,   measured  from  the  start  of  a  design  storm,  for  surface  runoff  to  collect  and  flow  from  the  most   remote  part  of  the  catchment  to  the  point  at  which  a  design  discharge  is  being  calculated.     It  is  noted  that  the  ‘time  of  concentration’  as  used  in  the  Rational  Method  is  not  the  same  as  the   ‘critical  storm  duration’  or  ‘time  to  peak’  as  determined  from  runoff-­routing  models,  such  as  RAFTS,   RORB  and  WBNM.  It  is  therefore  inappropriate  to  interchange  or  compare  these  catchment   parameters.     In  some  states,  time  of  concentration  is  determined  as  a  function  of  catchment  area.  Within  this   Manual,  time  of  concentration  is  determined  directly  from  flow  travel  times.  This  approach  has   been  adopted  because  it  is  considered  to  provide  a  better  representation  of  potential  changes  in   catchment  hydrology  caused  by  urbanisation.     Time  of  concentration  must  be  based  upon:     a  period  of  time  rounded  to  the  nearest  minute     the  sum  of  the  individual  travel  times  of  stormwater  runoff,  at  the  peak  of  the  storm,  passing   along  the  individual  drainage  segments  that  make  up  the  longest  (with  respect  to  time)  flow   path     a  total  travel  time  that  extends  only  so  far  as  the  stormwater  runoff  remains  confined  within  a   conduit,  swale  or  open  channel  where  the  individual  drainage  segment  does  not  provide   significant  surface  storage  that  could  attenuate  peak  discharges  (i.e.  the  segment  does  not   contain  a  pond,  lake,  or  floodplain).  The  exceptions  being  at  the  top-­of-­catchment  where  the   runoff  is  likely  to  consist  of  wide-­spread  sheet  flow.     at  the  top  of  the  catchment,  the  initial  travel  time  should  be  defined  by  which  ever  of  the   following  best  represents  the  upper  catchment  (the  exception  being  the  procedures  presented   in  Section  4.6.11):   −   the  term  ‘standard  inlet  time’  (refer  to  Section  4.6.4)   −   the  roof  runoff  travel  time  (refer  to  Section  4.6.5)   −   the  duration  of  sheet  flow  prior  to  flow  concentration  (refer  to  Section  4.6.6).     However,  consideration  of  ‘partial  area  effects’  may  require  the  adoption  of  an  alternative  (shorter)   time  of  concentration  (refer  to  Section  4.7).     4.6.2   Minimum  time  of  concentration   The  minimum  recommended  time  of  concentration  for  the  design  of  urban  drainage  systems  (not   roof  water  drainage—refer  to  building  codes)  is  5  minutes.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­9       4.6.3   Methodology  of  various  urban  catchments   The  means  of  determining  the  time  of  concentration  must  be  appropriate  for  the  type  of  drainage   catchment.  There  are  typically  five  different  types  of  drainage  catchments,  those  being:   (a)   Predominantly  piped  or  channelised  urban  catchments  less  than  500  ha  with  the  top  of  the   catchment  being  urbanised.   (b)   Predominantly  piped  or  channelised  urban  catchments  less  than  500  ha  with  the  top  of  the   catchment  being  bushland  or  a  grassed  park.   (c)   Bushland  catchments  too  small  to  allow  the  formation  of  a  creek  with  defined  bed  and  banks.   (d)   Urban  creeks  with  a  catchment  area  less  than  500  ha.   (e)   Rural  catchments  less  than  500  ha.     Table  4.6.1  provides  a  summary  of  the  typical  components  that  make  up  the  ‘time  of  concentration’   for  each  type  of  drainage  catchment.  This  table  outlines  the  typical  components  that  make  up  the   total  travel  time.  Unusual  drainage  catchments  may  require  an  alternative  approach  to  the   determination  of  an  appropriate  time  of  concentration.     Table  4.6.1  –  Summary  of  typical  components  of  time  of  concentration   Concentrated   overland  flow   Channel  flow   Creek  flow   travel  time   sheet  flow   Kerb  flow   inlet  time   Pipe  flow   Standard   Overland   time   time   time   Catchment  conditions   4.6.7  &   Subsection  number:   4.6.4   4.6.6   4.6.8   4.6.9   4.6.10   4.6.11   4.6.10   (a)  Urban  piped  catchments   with  urban  development  at   Yes       Yes   Yes   Yes     the  top  of  catchment   (b)  Urban  piped  catchments   with  park/bush  at  top  of     Yes   Yes   Yes   Yes   Yes     catchment   (c)  Small,  non-­piped   catchments,  with  no  formal     Yes   Yes       Yes     creek   (d)  Urban  creeks  (<  500  ha)   As  above  for  the  appropriate  catchment   Yes     with  no  floodplain  storage   conditions   (d)  Urban  creeks  (<  500  ha)   Standard  inlet  time,  sheet  flow  and  pipe  flow  time  not   with  significant  floodplain   Yes   included   storage   (e)  Rural  creek  catchments   Standard  inlet  time,  sheet  flow  and  pipe  flow  time  not   Yes   included     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­10       4.6.4   Standard  inlet  time   Use  of  standard  inlet  times  for  developed  catchments  is  recommended  because  of  the  uncertainty   relating  to  the  calculation  of  the  travel  time  of  overland  flow.  Standard  inlet  times,  as  presented  in   Table  4.6.2,  are  considered  to  represent  the  travel  time  from  the  top  of  the  catchment  to  a  location   where  the  first  gully  or  field  inlet  would  normally  be  expected  to  exist,  as  depicted  in  Figure  4.1.         P ipe flow G   utter flow   Ov   er   la n d   flo   w P ipe flow   Ov   S wale flo e rla w nd             Figure  4.1  –  Application  of  standard  inlet  time       Table  4.6.2  –  Recommended  standard  inlet  times   Inlet  time   Location   (minutes)   Road  surfaces  and  paved  areas   5     Urban  residential  areas  where  average  slope  of  land  at  top  of  catchment  is  greater   5   than  15%   Urban  residential  areas  where  average  slope    of  land  at  top  of  catchment  is  greater   8   than  10%  and  up  to  15%   Urban  residential  areas  where  average  slope    of  land  at  top  of  catchment  is  greater   10   than  6%  and  up  to  10%   Urban  residential  areas  where  average  slope    of  land  at  top  of  catchment  is  greater   13   than  3%  and  up  to  6%   Urban  residential  areas  where  average  slope    at  top  of  catchment  is  up  to  3%   15   Note:     The  average  slopes  referred  to  in  this  table  are  the  slopes  along  the  predominant  flow  path  for  the   catchment  in  its  developed  state.     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­11       4.6.5   Travel  times  from  roof  to  main  system  connection   In  cases  where  the  use  of  a  standard  inlet  time  is  not  considered  appropriate,  the  following  roof  to   drainage  system  flow  travel  times  are  recommended:     Table  4.6.3  –  Recommended  roof  drainage  system  travel  times   Time  to  point  A   Development  category   (minutes)   Rural  residential,  residential  low-­density     For  the  roof,  downpipes  and  pipe  connection  system  from  the  building  to  the   5   kerb  and  channel  or  a  rear-­of-­allotment  drainage  system  (Figure  4.2).   Residential  medium  and  high-­density,  commercial,  industrial  and     central  business  district   For  the  roof  and  downpipe  collection  pipe  to  the  connection  point  to  the   5   internal  allotment  drainage  system  abutting  the  building  (Figure  4.3).   Note:   The  flow  time  from  point  A  (figures  4.2  &  4.3)  through  the  internal  allotment  pipe  system  to  the  kerb   and  channel,  street  underground  system  or  rear  of  allotment  system  for  the  more  intense   developments  noted  should  be  calculated  separately.       A   K erb and channel S treet             A A   H  ous e   F actory           drainag e s ys tem R ear of allotment   Figure  4.2  –  Typical  roof  drainage  systems   Figure  4.3  –  Typical  roof  drainage  systems   (residential)   (industrial)   Note  (figures  4.2  &  4.3):  Point  A  is  referred  to  in  Table  4.6.3     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­12       4.6.6   Overland  flow  travel  times   Overland  flow  travel  times  are  used  when:     it  is  considered  inappropriate  to  use  standard  inlet  times,  or     surface  conditions  at  the  very  top  of  the  catchment  are  likely  to  produce  sheet  flow  conditions.     Procedure  for  the  determination  of  overland  flow  times:     Overland  flow  times  typically  consist  of  a  combination  of  sheet  flow  and  concentrated  flow   travel  times  (each  component  determined  separately).     The  first  step  is  to  determine  the  distance  over  which  ‘sheet  flow’  will  occur  at  the  top  of  the   catchment  (based  on  field  observations,  location  of  walking  trails,  natural  swales,  etc.).     Appropriate  consideration  must  be  given  to  the  maximum  sheet  flow  travel  distances  presented   in  Table  4.6.4.  In  urban  areas,  the  length  of  overland  sheet  flow  will  typically  be  20  to  50   metres.  In  rural  residential  areas  the  length  of  overland  sheet  flow  should  be  limited  to  200  m   (Argue,  1986),  however  the  actual  length  is  typically  between  50  and  200  m.     Travel  times  for  the  ‘sheet  flow’  segment  can  be  determined  either  from  the  Friend’s  equation   (Equation  4.5),  which  is  the  preferred  method,  or  the  Kinematic  Wave  equation  (Equation  4.6).     Table  4.6.4  –  Recommended  maximum  length  of  overland  sheet  flow   Surface  condition   Assumed  maximum  flow  length  (m)   Steep  (say  >10%)  grassland  (Horton’s  n  =  0.045)   20   Steep  (say  >10%)  bushland  (Horton’s  n  =  0.035)   50   Medium  gradient  (approx.  5%)  bushland  or  grassland   100   Flat  (0–1%)  bushland  or  grassland   200     Equation  4.5  (Friend,  1954)  may  be  used  for  determination  of  overland  sheet  flow  times.  This   equation  was  derived  from  previous  work  in  the  form  of  a  nomograph  for  shallow  sheet  flow  over  a   plane  surface  (Figure  4.4).  It  is  noted  that  values  for  Horton’s  ‘n’  are  similar  to  those  for  Manning’s   ‘n’  for  similar  surfaces.                                 Figure  4.4  –  Overland  sheet  flow  times  (shallow  sheet  flow  only)  (source:  ARR,  1977)     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­13       Friend’s  equation:     t  =  (107n  L  0.333)/S  0.2   (4.5)   where:     t   =   overland  sheet  flow  travel  time  (min)     L   =   overland  sheet  flow  path  length  (m)     n   =   Horton’s  surface  roughness  factor     S   =   slope  of  surface  (%)     The  kinematic  wave  equation  for  overland  travel  time,  as  developed  by  Ragan  &  Duru  (1972),  may   also  be  used;;  however,  it  should  only  be  applied  to  planes  of  sheet  flow  that  are  homogenous  in   slope  and  roughness.  Thus,  travel  times  need  to  be  determined  separately  for  areas  of  different   slope  or  roughness.  As  shown  by  McCuen  (1984)  it  is  best  applied  to  large  paved  areas  such  as   car  parks  and  airports.       t  =  6.94  (L.n*)  0.6  /(I  0.4.S  0.3)   (4.6)   where:     t   =   overland  travel  time  (min)     L   =   overland  sheet  flow  path  length  (m)     n*   =   surface  roughness/retardance  coefficient     I   =   rainfall  intensity  (mm/hr)     S   =   slope  of  surface  (m/m)     Typical  values  for  n*  are  presented  below:     (i)   As  quoted  by  Argue  (1986)  p.  28.   o   Paved  surfaces   =   0.015   o   Lawns   =   0.25   o   Thickly  grassed  surfaces   =   0.50     (ii)   As  derived  from  ARR  (1998),  Book  8,  Table  1.4.     Table  4.6.5  –  Surface  roughness  or  retardance  factors   Surface  type   Horton’s  roughness  coefficient  n*   Concrete  or  Asphalt   0.010  –  0.013   Bare  Sand   0.010  –  0.016   Gravelled  Surface   0.012  –  0.030   Bare  Clay-­Loam  Soil  (eroded)   0.012  –  0.033   Sparse  Vegetation   0.053  –  0.130   Short  Grass  Paddock   0.100  –  0.200   Lawns   0.170  –  0.480   Notes:   1.   The  surface  roughness/retardance  coefficient  n*  is  similar  but  not  identical  to  Manning’s  n  value  for   surface  roughness.   2.   For  further  details  of  this  procedure  reference  should  be  made  to  Technical  Note  3,  Book  8,  ARR  (1998).   3.   Experience  both  locally  and  as  quoted  by  McCuen  (1984)  indicates  that  the  kinematic  wave  equation   tends  to  result  in  excessively  long  overland  sheet  flow  travel  times.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­14       4.6.7   Initial  estimate  of  kerb,  pipe  and  channel  flow  time   An  initial  (trial)  estimate  of  flow  travel  times  along  kerbs,  pipes  and  channels  can  be  determined   from  Figure  4.5  (Argue,  1986).     The  chart  may  be  used  directly  to  determine  approximate  travel  times  along  a  range  of  rigid   channel  types  and,  with  the  application  of  multiplier  Δ  for  a  range  of  loose-­boundary  channel  forms.     Technical  notes  for  Figure  4.5   Flow  travel  time  (approximate)  may  be  obtained  directly  from  this  chart  for:     kerb-­and-­gutter  channels     stormwater  pipes     allotment  channels  of  all  types  (surface  and  underground)     drainage  easement  channels  (surface  and  underground)     Multiplier  Δ,  should  be  applied  to  values  obtained  from  the  chart  as  per:     grassed  swales,  well  maintained  and  without  driveway  crossings,  Δ  =  4     blade-­cut  earth  table  drains,  well  maintained  and  no  driveway  crossings,  Δ  =  2     natural  channels,  Δ  =  3     Once  a  trial  flow  rate  has  been  determined,  the  travel  time  determined  from  Figure  4.5  will  need  to   be  checked  using  either  figures  4.6  or  4.7.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­15                                                                                                 Figure  4.5  –  Flow  travel  time  in  pipes  and  channels  (Source:  Argue,  1986)   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­16       4.6.8   Kerb  flow  travel  times   Time  of  flow  in  kerb  and  channel  should  be  determined  by  dividing  the  length  of  kerb  and  channel   flow  by  the  average  velocity  of  the  flow.     The  average  velocity  of  the  flow  may  be  determined  in  either  of  two  ways:     Izzard’s  equation—refer  to  Technical  Note  4,  Book  8,  ARR  (1998).  Reference  is  also  made  to   Section  7.4.6  (d)  of  this  Manual  for  a  more  detailed  explanation  of  Izzard’s  equation.  Figure  4.7   provides  a  quick  solution  to  Izzard’s  equation—accurate  enough  for  travel  time  calculations.     Using  Figure  4.6.                                                     Figure  4.6  –  Kerb  and  channel  flow  time  using  Manning’s  equation     Technical  notes  for  Figure  4.6   Formula:   t  =  0.025  L  /  S  0.5  (minutes)   where:     t   =   time  of  gutter  flow  in  minutes     L   =   length  of  gutter  flow  in  metres     S   =   slope  of  gutter  (%)   Example   Length  of  gutter  flow  =  100m     Average  slope  of  gutter  =  3%     Thus,  time  of  travel  =  1.5  minutes.         Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­17                                                                                                         Figure  4.7  –  Kerb  and  channel  flow  velocity  using  Izzard’s  equation   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­18       4.6.9   Pipe  flow  travel  times   Wherever  practical,  pipe  travel  times  should  be  based  on  calculated  pipe  velocities  either  using  a   Pipe  Flow  Chart  (e.g.  n  =  0.013  for  concrete  pipes),  uniform  flow  calculations  using  Manning’s   equation  (Equation  4.7),  or  a  calibrated  numerical  drainage  model.     An  initial  (trial)  assessment  of  the  pipe  flow  travel  time  can  be  determined  using  Figure  4.5.       Alternatively,  if  the  travel  time  within  the  pipe  is  small  compared  to  the  overall  time  of   concentration,  then  an  average  pipe  velocity  of  2  m/s  and  3  m/s  may  be  adopted  for  low  gradient   and  medium  to  steep  gradient  pipelines  respectively.     4.6.10   Open  channel  flow  travel  times   The  time  stormwater  takes  to  flow  along  an  open  channel  may  be  determined  by  dividing  the   length  of  the  channel  by  the  average  velocity  of  the  flow.  The  average  velocity  of  the  flow  is   calculated  using  the  hydraulic  characteristics  of  the  open  channel.     Manning’s  equation  is  suitable  for  this  purpose:       V  =  (1/n).R  2/3.  S  1/2   (4.7)     From  which   t  =  L/(60.V)  =  n.  L  /  (60.  R  2/3.  S  1/2)   (4.8)   where:     V   =   average  velocity  (m/s)     n   =   Manning’s  roughness  coefficient     R   =   hydraulic  radius  (m)     S   =   friction  slope  (m/m)     L   =   length  of  reach  (m)     t   =   travel  time  (min)     Where  an  open  channel  has  varying  roughness  or  depth  across  its  width  it  may  be  necessary  to   segment  the  flow  and  determine  the  average  cross-­sectional  flow  velocity  in  order  to  determine  the   flow  travel  time.     Travel  times  along  grassed  swales  can  vary  significantly  depending  on  flow  depth  and  surface   roughness.  The  effective  surface  roughness  should  be  determined  from  vegetation  retardance   charts  (Department  of  Main  Roads,  2002).  For  a  grass  length  of  50  to  150  mm,  typical  Manning’s   roughness  values  may  be  interpolated  from  Table  9.3.4.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­19       4.6.11   Time  of  concentration  for  rural  and  creek  catchments   Wherever  practical,  a  regional  flood  frequency  analysis  (refer  to  ARR)  should  be  used  to  determine   design  discharges  from  rural  catchments  in  preference  to  the  use  of  the  Rational  Method.     The  available  methods  for  the  determination  of  time  of  concentration  for  creeks  include:     The  Bransby-­Williams’  equation—however,  various  authorities  have  found  this  equation  to  be   unreliable  (refer  to  further  discussion  within  the  Background  Notes).     The  modified  Friend’s  equation—this  method  was  not  found  to  be  representative  of  the  time  of   concentration  for  urban  creeks  within  Brisbane  (refer  to  further  discussion  within  the   Background  Notes)     The  stream  velocity  method—this  method  has  been  modified  from  that  presented  within  the   2013  Provisional  edition  of  this  Manual  following  recent  (2015)  calibration  studies  (refer  to   further  discussion  within  the  Background  Notes).     (a)    Bransby-­Williams’  equation     tc  =  58  L  /(A  0.1.  Se  0.2)   (4.9)   where:     tc   =   the  time  of  concentration  (min)     L   =   length  (km)  of  flow  path  from  catchment  divide  to  outlet     A   =   catchment  area  (ha)     Se   =   equal-­area  slope  of  stream  flow  path  (%)     (b)    Modified  Friend’s  equation  (maximum  catchment  area  of  25  km2)       tc  =  800  L  /(Ch.  A  0.1.  Se0.4)   (4.10)   where:     tc   =   time  of  concentration  (min)     L   =   Length  (km)  of  flow  path  from  catchment  divide  to  outlet     Ch   =   Chezy’s  coefficient  at  the  site  =  (1/n)R1/6     R   =   hydraulic  radius  =  0.75RS  where  stream  slope  is  fairly  uniform       =   0.65RS  where  stream  slope  varies  appreciably  along  the  stream     RS   =   hydraulic  radius  at  the  initially  assumed  flood  level  at  the  site     n   =   average  Manning  roughness  coefficient  for  the  entire  stream  length     A   =   catchment  area  (ha)     Se   =   equal-­area  slope  of  stream  flow  path  (%)     Calculation  of  hydraulic  radius  (R)  is  based  upon  the  peak  level  of  the  design  flood  at  the  site  in   question.  If  later  hydraulic  calculations  show  this  level  to  be  in  error  by  more  than  0.3–0.6  m,  the   value  should  be  recalculated.  Also,  an  ‘inlet  time’  should  not  be  applied  to  any  of  the  procedures   presented  in  this  section.     Equations  4.9  and  4.10  use  different  units  from  the  original  equations  presented  within  the  1992   edition  of  this  Manual,  as  well  as  other  publications  such  as  ARR  (1998).     The  equation  units  were  changed  such  that  both  equations  were  able  to  utilise  the  same  units  for   time,  area  and  equal-­area  slope.  The  adopted  equation  coefficients  (‘58’  &  ‘800’)  have  been   appropriately  adjusted  (though  rounded  down  from  the  exact  unit  conversion)  for  use  of  these   revised  units.     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­20         Technical  note  for  Figure  4.8:     Warning : equa l area s lope (S e )   needs to be converted from Figure  4.8  demonstrates  equal-­area  slope  in  units  of  m/km,  which     (m/km) to (% ) for us e in equations needs  to  be  converted  to  percentage  units  (%)  by  dividing  by  10.                       Figure  4.8  –  Derivation  of  the  equal-­area  slope  (Se)  of  main  stream     (c)    Stream  Velocity  Method   The  Stream  Velocity  Method  is  based  on  the  use  of  an  ‘assumed’  (i.e.  not  real)  average  stream   velocity  to  determine  a  nominal  ‘time  of  concentration’,  that,  when  used  with  the  Rational  Method,   compensates  for  the  flow  attenuation  effects  of  floodplain  storage.     Table  4.6.6  –  Modified  Stream  Velocity  method  for  catchment  areas  of  5  to  100  km2     Catchment  description   Travel  velocity  (m/s)     Flat  country  (0  to  1.5%  average  catchment  surface  slope)   0.3   Rolling  country  (1.5  to  4%  average  catchment  surface  slope)   0.7   Hilly  country   Significant  floodplain  storage  exists  along  most  of  the   0.9   (4  to  8%   waterway   average   Natural  floodplain  storage  is  limited  by  adjacent  hill   1.5   catchment   slopes,  or  the  natural  floodplain  storage  has  been  reduced   surface   by  urbanisation  and/or  land  filling     slope)   The  waterway  has  experienced  significant  channelisation   2.0   that  has  removed  most  of  the  floodplain  storage  relevant   to  the  flood  event  being  studied   Steep  country  (8  to  15%  average  catchment  surface  slope)  with  soil-­ 1.5   based  waterway  (i.e.  not  a  rocky  gorge)  with  floodplain  storage  limited  by   steep  topography   Steep  rocky  mountain  country  (>10%  average  catchment  surface  slope)   3.0   with  rock-­based  waterway  (i.e.  rocky  gorge)  with  minimal,  if  any,   floodplain  storage   Fully  channelised  waterway  with  no  floodplain  storage   Actual  stream  velocity   Notes:     ‘Travel  velocity’  represents  the  ‘average  stream  velocity’  that  should  be  adopted  to  determine  the  ‘time  of   concentration’  for  use  within  the  Rational  Method     ‘Catchment  surface  slope’  is  a  measure  of  the  average  slope  of  the  full  drainage  catchment,  not  the  stream  bed;;   thus  it  is  not  the  same  as  stream  slope  or  ‘equal  area  slope’.     The  extent  of  floodplain  storage  refers  to  the  extent  of  floodplain  storage  during  the  flood  event  being  studied;;  and   thus  may  not  be  relevant  in  the  study  of  minor  in-­bank  flows.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­21       4.7   The  partial  area  effect   Because  the  Rational  Method  has  been  developed  for  ‘typical’  drainage  catchments,  there  is  the   potential  for  this  method  not  to  define  the  actual  ‘peak’  design  discharge  for  drainage  catchment   that  exhibit  ‘unusual’  drainage  conditions.  However,  in  some  situations  high  flows  can  be   generated  from  a  shorter  storm  duration  acting  upon  a  reduced  catchment  area.  This  outcome  is   known  as  the  ‘partial  area  effect’.     When  considering  the  potential  impacts  of  partial  area  effects  on  the  selection  of  the  effective   catchment  area  and  time  of  concentration,  the  ‘intent’  must  be  to:     give  appropriate  consideration  of  possible  catchment  characteristics  that  could  cause  partial   area  effects     give  appropriate  consideration  to  benefits  of  the  development  of  a  runoff-­routing  model  that   would  better  model  the  runoff  characteristics  of  an  ‘unusual’  catchment  instead  of  utilising  the   Rational  Method     check  for  partial  area  effects  in  drainage  catchments  that  exhibit  any  of  the  following   characteristics:   −   a  long,  narrow,  upper  catchment  that  contributes  an  ‘out-­of-­proportion’  contribution  to  the   whole-­of-­catchment  time  of  concentration     −   a  significant  change  in  creek  slope   −   a  significant  increase  in  the  runoff  velocity  or  runoff  volumes  (expressed  in  terms  of  the   coefficient  of  discharge)  from  the  upper  catchment  to  the  lower  catchment.     However,  if  the  catchment  does  exhibit  unusual  runoff  conditions,  then  this  should  mean  that  a   suitable  runoff-­routing  model  should  be  employed  in  preference  to  a  questionable  Rational  Method   analysis.  Guidance  on  the  treatment  of  partial  area  effects  is  provided  within  the  Background   Notes.   4.8   Intensity-­frequency-­duration  data   Intensity-­frequency-­duration  (IFD)  data  is  required  as  input  to  the  hydrologic  model  used  for   design.  IFD  charts  can  be  obtained  either  through  the  local  authority,  the  Bureau  of  Meteorology,   or  Australian  Rainfall  and  Runoff.     As  of  2016,  Book  1,  Chapter  6  of  AR&R  is  the  best  point  of  reference.   Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­22       4.9   Estimation  of  runoff  volume   4.9.1   General   In  stormwater  design,  the  estimation  of  runoff  volume  is  often  as  important  as  the  estimation  of   peak  discharge.  Runoff  volume  is  used  for  a  variety  of  purposes,  including:     sizing  temporary  and  permanent  sedimentation  basins     sizing  stormwater  detention/retention  basins     designing  various  urban  stormwater  treatment  systems.     Stormwater  runoff  volumes  can  be  represented  by  either  the  ‘average  annual  runoff  volume’,  or  the   runoff  volume  expected  from  just  a  ‘single  storm’.  The  procedures  used  to  determine  the  average   annual  volumetric  runoff  coefficient  are  different  from  those  used  to  determine  the  volumetric  runoff   coefficient  for  an  isolated  storm.  It  is  also  noted  that  the  volumetric  runoff  coefficient  (CV)  is  not  the   same  as  the  Rational  Method  coefficient  of  discharge  (C).   4.9.2   Estimation  of  annual  average  runoff  volume   The  average  annual  runoff  volume  may  be  determined  from  continuous  catchment  modelling   (preferred  method),  or  through  the  use  of  a  calibrated  regional  volumetric  runoff  coefficient.     The  average  annual  volumetric  runoff  coefficient  for  a  given  catchment  is  depend  on:     soil  permeability     local  hydrology     percentage  of  directly  connected  impervious  area     percentage  of  indirectly  connected  impervious  surface  area     degree  of  stormwater  harvesting,  including  the  use  of  rainwater  tanks.     An  estimation  of  the  average  annual  volumetric  runoff  coefficient  may  be  obtained  using  one  of  the   following  methods:     analysis  of  long-­term  stream  gauging  and  rainfall  records  (preferred  option)     continuous  water  balance  modelling  using  a  calibrated  catchment  yield  model  (second  option)     use  of  an  annual  average  volumetric  runoff  coefficient  from  an  adjacent  catchment  with  similar   soil,  topographic  and  climatic  conditions  (third  option).   4.9.3   Estimation  of  runoff  volume  from  a  single  storm   An  estimation  of  runoff  volume  from  a  single  (isolated)  storm  event  may  be  obtained  using  one  of   the  following  methods:     calibrated  runoff–routing  model  (preferred  method)     use  of  the  single  storm  event  volumetric  runoff  coefficient  (Table  4.9.1)     direct  extraction  of  estimated  rainfall  losses  from  a  given  rainfall  hyetograph.     The  actual  runoff  volume  will  be  dependent  on  a  number  of  variables  including  soil  type,  depth  of   soil,  land  slope,  the  degree  of  surface  storage,  type  and  density  of  vegetation  cover,  and  the   degree  of  soil  moisture  at  the  start  of  the  storm  event  (i.e.  the  lasting  effects  of  previous  rainfall).     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­23       (a)    Single  event  volumetric  runoff  coefficient     The  volumetric  runoff  coefficient  for  a  single  storm  event  may  be  estimated  using  the  U.S.  Soil   Conservation  Service  (1986)  procedures.  Volumetric  runoff  coefficients  developed  from  these   procedures  are  presented  in  Table  4.9.1.     When  using  the  coefficients  presented  in  Table  4.9.1  the  following  issues  should  be  noted:     The  coefficients  apply  to  the  pervious  surfaces  only;;  therefore,  an  adjustment  must  be  applied   to  determine  a  coefficient  for  urbanised  catchments,  as  presented  in  Equation  4.12.     The  coefficients  where  originally  developed  for  relatively  flat  agricultural  land;;  therefore,  these   coefficients  are  likely  to  under-­estimate  the  runoff  volume  from  steep  catchments.         CV ( pervious)  . ( A − A(imp.) ) + A(imp.) (4.12)   CV (composite ) =   A where:    CV  (composite)   =   Composite  volumetric  runoff  coefficient     CV  (pervious)   =   Volumetric  runoff  coefficient  for  pervious  surface  (Table  4.9.1)     A   =   Total  catchment  area     A  (imp.)   =   Area  of  directly  connected  impervious  surface,  plus  a  percentage  of  the  indirectly   connected  impervious  surface  area  (assume  50%  unless  otherwise  directed)     Table  4.9.1  –  Typical  single  storm  event  volumetric  runoff  coefficients  for  various  Soil   Hydrologic  Groups     Soil  Hydrologic  Group   Rainfall   Group  A   Group  B   Group  C   Group  D   (mm)   Sand   Sandy  loam   Loamy  clay   Clay   10   0.02   0.10   0.09   0.20   20   0.02   0.14   0.27   0.43   30   0.08   0.24   0.42   0.56   40   0.16   0.34   0.52   0.63   50   0.22   0.42   0.58   0.69   60   0.28   0.48   0.63   0.74   70   0.33   0.53   0.67   0.77   80   0.36   0.57   0.70   0.79   90   0.41   0.60   0.73   0.81   100   0.45   0.63   0.75   0.83   Source:  US  Soil  Conservation  Service  (1986)     Group  A  soils:  soil  with  very  high  infiltration  capacity.  Usually  consist  of  deep  (>  1  m),   well-­drained  sandy  loams,  sands  or  gravels.     Group  B  soils:  soil  with  moderate  to  high  infiltration  capacity.  Usually  consist  of  moderately  deep   (>0.5  m),  well-­drained  medium  loamy  texture  sandy  loams,  loams  or  clay  loam  soils.     Queensland  Urban  Drainage  Manual   2016  Edition   Catchment  Hydrology    4-­24       Group  C  soils:  soil  with  a  low  to  moderate  infiltration  capacity.  Usually  consist  of  moderately  fine   clay  loams,  or  loamy  clays,  or  more  porous  soils  that  are  impeded  by  poor  surface  conditions,   shallow  depth  or  a  low  porosity  subsoil  horizon.     Group  D  soils:  soil  with  a  low  porosity.  Usually  consists  of  fine-­texture  clays,  soils  with  poor   structure,  surface-­sealing  (dispersive/sodic)  soils,  or  expansive  clays.  Included  in  this  group  would   be  soils  with  a  permanent  high  watertable.     Landcom  (2004)  provides  typical  infiltration  rates  for  the  various  Soil  Hydrological  Groups  (A,  B,  C,   and  D)  as  presented  in  Table  4.9.2.     Table  4.9.2  –  Typical  infiltrations  rates  for  various  Soil  Hydrological  Groups     Soil  Hydrological   Typical  infiltration  rate  (mm/hr)   Ksat  (mm/hr)     Group   Saturated   Dry  soil   A   25   >250   >120   B   13   200   10–120   C   6   125   1–10   D   3   75  

Use Quizgecko on...
Browser
Browser