Queensland Urban Drainage Manual 2016 Edition PDF
Document Details
Uploaded by Deleted User
2016
Tags
Related
- Tema 5 Alcantarillado PDF
- Diseño de Drenaje para la Evacuación de EscorrentÃa Av. Sullana, Piura 2024 PDF
- Sewerage Network Design Project 2023-2024 PDF
- Comparison of 1D-1D and 1D-2D Urban Flood Models PDF
- 2017 Queensland Urban Drainage Manual - Hydrology Chapter 4 PDF
- 2016 QUDM Detention & Retention Basins PDF
Summary
This document is a comprehensive guide to Queensland urban drainage, covering stormwater planning, legal aspects, hydrology, design, and more. The 2016 edition is detailed and designed for professionals in the field. It offers a series of chapters that dive into different areas of drainage system planning and design.
Full Transcript
QUEENSLAND URBAN DRAINAGE MANUAL FOURTH EDITION Queensland  Urban  Drainage  Manual  Fourth  edition,  2016  (Institute  of  Public  Works  Engineering  Australasia,  Queensland  Division)  Third  edition,  2013  (Department  of  Energy  and  Water  Supply)  Second  edition  reprint,  2008  (CD-...
QUEENSLAND URBAN DRAINAGE MANUAL FOURTH EDITION Queensland  Urban  Drainage  Manual  Fourth  edition,  2016  (Institute  of  Public  Works  Engineering  Australasia,  Queensland  Division)  Third  edition,  2013  (Department  of  Energy  and  Water  Supply)  Second  edition  reprint,  2008  (CD-ÂROM  integrating  Volume  2)  Second  edition,  2007,  Volume  1  only  (Department  of  Natural  Resources  and  Water)  Second  reprint,  edition  1-Â2,  1994  First  reprint,  edition  1-Â1,  1993  First  edition,  1992  (Department  of  Primary  Industries)    Published  by:  the  Institute  of  Public  Works  Engineering  Australasia,  Queensland  (IPWEAQ)     ©  Copyright  2017  Institute  of  Public  Works  Engineering  Australasia,  Queensland.    No  part  of  this  publication  can  be  reproduced  without  the  prior  consent  of  the  joint  owners,  the  Department  of  Energy  &  Water  Services  (DEWS)  and  the  Institute  of  Public  Works  Engineering  Australasia,  Queensland  Division  Ltd  (IPWEAQ).Some  diagrams  are  supplied  by,  and  remain  the  intellectual  property  of,  Catchments  &  Creeks  Pty  Ltd  (refer  to  ‘Acknowledgments’).  We  acknowledge  the  contribution  of  the  Brisbane  City  Council  to  the  development  of  the  publication  and  their  continued  involvement  as  a  key  stakeholder.   Every  effort  and  care  has  been  taken  by  the  authors  and  the  sponsoring  organisations  to  verify  that  the  methods  and  recommendations  contained  in  this  Manual  are  appropriate  for  Queensland  conditions.  Notwithstanding  these  efforts,  no  warranty  or  guarantee,  express,  implied,  or  statutory  is  made  as  to  the  accuracy,  reliability,  suitability  or  results  of  the  methods  or  recommendations.   The  authors  and  sponsoring  organisations  shall  have  no  liability  or  responsibility  to  the  user  or  any  other  person  or  entity  with  respect  to  any  liability,  loss  or  damage  caused  or  alleged  to  be  caused,  directly  or  indirectly,  by  the  adoption  and  use  of  the  methods  and  recommendations  of  the  Manual,  including,  but  not  limited  to,  any  interruption  of  service,  loss  of  business  or  anticipatory  profits,  or  consequential  damages  resulting  from  the  use  of  the  Manual.   Use  of  the  Manual  requires  professional  interpretation  and  judgement.  Appropriate  design  procedures  and  assessment  must  be  applied,  to  suit  the  particular  circumstances  under  consideration.   Published  2017    For  more  information,  please  contact    Ross  Guppy  Director,  Technical  Products  IPWEAQ  [email protected]  Queensland  Urban  Drainage  Manual  2016  Edition  ii   Chapters  1  Introduction    2.  Stormwater  planning  3.  Legal  aspects  4.  Catchment  hydrology  5.  Detention/retention  systems  6.  Computer  models  7.  Urban  drainage  8.  Stormwater  outlets  9.  Open  channels  10.  Waterway  crossings  11.  Environmental  considerations  12.  Safety  aspects  13.  Miscellaneous  matters  14.  References  15.  Index  Appendix  1   Pipe  flow  design  charts  Appendix  2   Structure  pressure  change  coefficient  charts  Appendix  3   Road  flow  capacity  charts   Queensland  Urban  Drainage  Manual  2016  Edition  iii   Contents       Page  Preface    xiii  Acknowledgments   xv  List  of  tables   xvii  List  of  figures   xx   1  Introduction     1.1  Use  of  this  manual  1-Â1   1.2  Background  Notes  1-Â2   1.3  Consideration  of  regional  factors  1-Â2   2  Stormwater  planning    2.1  Purpose   2-Â1   2.2  General   2-Â1   2.3  Objectives  and  principles  of  stormwater  management  2-Â2   2.4  Other  related  management  philosophies  2-Â5   2.5  National  Context  2-Â5   2.6  State  context  2-Â6    2.6.1  State  Planning  Policy  (state  interests)  2-Â6    2.6.2  Healthy  Waters  Management  Plans  2-Â7    2.6.3  Planning  legislation  2-Â8   2.7  Local  context  2.8   2.8  Urban  stormwater  drainage  system  planning  2.9   2.9  Climate  change  2-Â10   3  Legal  aspects   3.1  An  introduction  to  the  Australian  legal  system  3-Â1   3.2  QUDM  and  the  law  3-Â1   3.3  Key  legal  concepts  for  stormwater  design  3-Â2   3.4  Potential  legal  requirements  for  stormwater  3-Â3   3.5  Due  diligence  assessment  3-Â3   3.6  Stormwater  changes  –  including  nuisance  3-Â4    3.6.1  Diversion  of  stormwater  3-Â4    3.6.2  Concentration  of  stormwater  flows  3-Â5    3.6.3  Changes  in  other  flow  characteristics  3-Â5    3.6.4  Adverse  impacts  on  the  future  use  or  value  of  land  3-Â5   3.7  Common  law   3-Â5    3.7.1    Surface  water  3-Â6    3.7.2    Riparian  rights  3-Â7    3.7.3    Regulatory  authorities  3-Â7   3.8  Tenure  for  proposed  drainage  works  3-Â7    3.8.1  Non-Âfreehold  land  3-Â8    3.8.2  Freehold  land  3-Â8   3.9  Lawful  discharge  of  stormwater  3-Â8    3.9.1  Lawful  point  of  discharge  test  3-Â9   3.10  Discharge  agreements  issued  by  down-Âslope  property  owners  3-Â10   3.11  Drainage  reserves  3-Â11  Queensland  Urban  Drainage  Manual  2016  Edition  iv    3.12  Registered  Drainage  easements  3-Â11    3.12.1  Easements  generally  3-Â11    3.12.2  Need  for  registered  easements  in  stormwater  and  drainage  projects  3-Â12    3.12.3  Creation  or  acquisition  of  registered  easements  and  existing  easements  3-Â13    3.12.4  Drainage  easement  dimensions  3-Â14   3.13  Acquiring  registered  easement  rights  3-Â14    3.13.1  Voluntary  acquisition  by  private  treaty  3-Â14    3.13.2  Compulsory  acquisition  by  a  local  government  3-Â15    3.13.3  Imposition  of  statutory  rights  under  the  Property  Law  Act  3-Â16   3.14  Process  for  private  developers  seeking  a  registered  drainage  easement  or         drainage  reserve  over  downstream  property  3-Â16   3.15  Statutory  approvals  and  other  requirements  3-Â17    3.15.1  Design  requirements  for  State-Âcontrolled  transport  corridors  3-Â20   4  Catchment  hydrology   4.1  Introduction  4-Â1   4.2  Choice  of  hydrologic  method  4-Â2    4.2.1  Rational  Method  4-Â3    4.2.2  Utilisation  of  the  Rational  Method  within  complex  catchments  4-Â4    4.2.3  Runoff-Ârouting  models   4-Â4    4.2.4  Regional  flood  frequency  analysis  4-Â5   4.3  The  Rational  Method  4-Â6   4.4  Catchment  area  4-Â6   4.5  Coefficient  of  discharge  4-Â7   4.6  Time  of  concentration  (Rational  Method)  4-Â9    4.6.1  General  4-Â9    4.6.2  Minimum  time  of  concentration  4-Â9    4.6.3  Methodology  of  various  urban  catchments  4-Â10    4.6.4  Standard  inlet  time  4-Â11    4.6.5  Travel  times  from  roof  to  main  system  connection  4-Â12    4.6.6  Overland  flow  travel  times  4-Â13    4.6.7  Initial  estimate  of  kerb,  pipe  and  channel  flow  time  4-Â15    4.6.8  Kerb  flow  travel  times  4-Â17    4.6.9  Pipe  flow  travel  times  4-Â19    4.6.10  Open  channel  flow  travel  times  4-Â19    4.6.11  Time  of  concentration  for  rural  and  creek  catchments  4-Â20   4.7  The  partial  area  effect  4-Â22   4.8  Intensity-Âfrequency-Âduration  data  4-Â22   4.9  Estimation  of  runoff  volume  4-Â23    4.9.1  General  4-Â23    4.9.2  Estimation  of  annual  average  runoff  volume  4-Â23    4.9.3  Estimation  of  runoff  volume  from  a  single  storm  4-Â23   5.  Detention/retention  systems   5.1  General   5-Â1   5.2  Master  drainage  planning  5-Â1   5.3  The  uses  of  stormwater  detention  and  retention  5-Â1   5.4  Limitations  on  the  use  of  stormwater  detention  and  retention  5-Â2   5.5  Design  objectives  and  standards  5-Â2    5.5.1  General  5-Â2  Queensland  Urban  Drainage  Manual  2016  Edition  v     5.5.2  On-Âsite  detention  systems  5-Â3    5.5.3  Discharge  restrictions  due  to  limited  down-Âslope  drainage  capacity  5-Â3    5.5.4  Controlling  local  stormwater  flooding  5-Â4    5.5.5  Controlling  downstream  creek  flooding  5-Â4    5.5.6  Minimising  the  risk  of  accelerated  channel  erosion  5-Â5    5.5.7  Controlling  stormwater  runoff  to  reduce  stress  on  aquatic  life  5-Â6    5.5.8  Summary  of  overall  detention/retention  design  objectives  5-Â6   5.6  Basin  sizing  and  flood  routing  5-Â7    5.6.1  Initial  basin  sizing  5-Â7    5.6.2  Final  basin  sizing  5-Â9    5.6.3  Temporal  patterns  5-Â9    5.6.4  Allowance  for  existing  channel  storage  5-Â10   5.7  Basin  freeboard  5-Â11   5.8  Basin  floor  drainage  5-Â11   5.9  Low-Âlevel  basin  outlet  structures  5-Â12    5.9.1  Types  of  basin  outlets  5-Â12    5.9.2  Orifice  flow  equation  5-Â12    5.9.3  Protection  of  basin  outlet  5-Â13    5.9.4  Pipe  protection  5-Â13    5.9.5  Outfall  protection  5-Â14   5.10  High-Âlevel  outlet  structures  5-Â14    5.10.1  Extreme  flood  event  5-Â14    5.10.2  Spillway  design  5-Â15   5.11  Embankments  5-Â15   5.12  Public  safety  issues  5-Â16   5.13  Statutory  requirements  5-Â17   6.  Computer  models   6.1  Introduction  6-Â1   6.2  Computer  models  6-Â1    6.2.1  Hydrologic  models  6-Â1    6.2.2  Hydraulic  models  6-Â1    6.2.3  Water  quality  models  6-Â2   6.3  Reporting  of  numerical  model  outcomes  6-Â2   7.  Urban  drainage   7.1  Planning  issues  7-Â1   7.2  The  major/minor  drainage  system  7-Â1    7.2.1  General  7-Â1    7.2.2  Minor  drainage  system  7-Â1    7.2.3  Major  drainage  system  7-Â2    7.2.4  Operation  of  the  drainage  system  during  severe  storms  7-Â3    7.2.5  Preparation  of  Severe  Storm  Impact  Statements  7-Â4   7.3  Design  standards  7-Â4    7.3.1  Design  AEPs  7-Â4    7.3.2  Selection  of  the  major  storm  AEP  based  on  risk  assessment  7-Â6    7.3.3  Consideration  of  events  in  excess  of  the  major  storm  7-Â6    7.3.4  Land  use/development  categories  7-Â6    7.3.5  Essential  community  infrastructure  7-Â8    7.3.6  Overland  flow  paths  7-Â8  Queensland  Urban  Drainage  Manual  2016  Edition  vi     7.3.7  Cross  drainage  structures  (culverts)  7-Â8    7.3.8  Flood  evacuation  routes  7-Â9    7.3.9  Basements  and  non-Âhabitable  rooms  of  buildings  7-Â9    7.3.10  Public  car  parks  7-Â10    7.3.11  Areas  of  manufacture  or  storage  of  bulk  hazardous  materials  7-Â10    7.3.12  Freeboard  7-Â10    7.3.13  Risk-Âbased  freeboard  requirements  7-Â10    7.3.14  Easement  widths  7-Â11    7.3.15  Minimum  floor  levels  7-Â11    7.3.16  Flow  depth  and  width  limitations  7-Â14   7.4  Roadway  flow  limits  and  capacity  7-Â17    7.4.1  Introduction  7-Â17    7.4.2  Minor  and  major  storm  conditions  7-Â17    7.4.3  General  flow  width,  depth  and  velocity  limits  7-Â18    7.4.4  Flow  width  limits  for  pedestrian  safety  7-Â19    7.4.5  Flow  width  limits  for  traffic  safety  7-Â20    7.4.6  General  requirements  7-Â20   7.5  Stormwater  inlets  7-Â23    7.5.1  Types  of  stormwater  inlets  7-Â23    7.5.2  Provision  for  blockage  7-Â23    7.5.3  Kerb  inlets  in  roads  7-Â24    7.5.4  Field  inlets  7-Â27    7.5.5  Open  pipe  inlets  7-Â30   7.6  Access  chambers  7-Â31    7.6.1  General  7-Â31    7.6.2  Spacing  7-Â31    7.6.3  Fluid  mechanics  within  access  chambers  7-Â31    7.6.4  Sizing  access  chambers  7-Â32    7.6.5  Access  chamber  tops  7-Â33    7.6.6  Deflection  of  pipe  joints,  splayed  joints  etc.  7-Â33    7.6.7  Reduction  in  pipe  size  7-Â33    7.6.8  Surcharge  chambers  7-Â33   7.7  Pipeline  location  7-Â35   7.8  Pipe  material  and  standards  7-Â36    7.8.1  Local  authority  requirements  7-Â36    7.8.2  Standards  7-Â36    7.8.3  Pipes  and  pipe  laying  7-Â37    7.8.4  Box  sections  7-Â38    7.8.5  Access  chambers  and  structures  7-Â38   7.9  Structural  design  of  pipelines  7-Â40   7.10  Minimum  cover  over  pipes  7-Â41   7.11  Flow  velocity  limits  7-Â42   7.12  Pipe  grade  limits  7-Â43   7.13  Roof  and  allotment  drainage  7-Â44    7.13.1  General  7-Â44    7.13.2  Roof  drainage  7-Â44    7.13.3  Levels  of  roof  and  allotment  drainage  7-Â44    7.13.4  Rear  of  allotment  drainage  systems  7-Â48    7.13.5  Effect  of  roof  and  allotment  drainage  on  the  primary  drainage  network  7-Â52    7.13.6  Managing  the  overland  flow  component  of  inter-Âallotment  drainage  7-Â52  Queensland  Urban  Drainage  Manual  2016  Edition  vii     7.13.7  The  use  of  easements  in  the  management  of  inter-Âallotment  drainage  7-Â52    7.13.8  Ownership  of  allotment  and  inter-Âallotment  drainage  structures  7-Â52    7.13.9  Inter-Âallotment  drainage  in  rural  residential  areas  7-Â53    7.13.10  Level  0  drainage  7-Â53    7.13.11  Level  I  drainage  7-Â54    7.13.12  Level  II  drainage  (rear  of  allotment  drainage)  7-Â55    7.13.13  Level  III  drainage  (rear  of  allotment  drainage)  7-Â57    7.13.14  Level  IV  drainage  7-Â59    7.13.15  Level  V  drainage  (rear  of  allotment  drainage)  7-Â60   7.14  Public  utilities  and  other  services  7-Â61    7.14.1  General  7-Â61    7.14.2  Clearances  to  services  7-Â61   7.15  Discharge  calculations  7-Â62    7.15.1  General  7-Â62    7.15.2  Design  procedure  7-Â62   7.16  Hydraulic  calculations  7-Â63    7.16.1  General  7-Â63    7.16.2  Pipe  and  structure  losses  7-Â63    7.16.3  Hydraulic  grade  line  and  total  energy  line  7-Â64    7.16.4  Methods  of  design  7-Â65    7.16.5  Starting  hydraulic  grade  level  7-Â65    7.16.6  Freeboard  at  inlets  and  junctions  7-Â66    7.16.7  Pipe  capacity  7-Â68    7.16.8  Pressure  changes  at  junction  stations  7-Â68    7.16.9  Inlets  and  outlets  7-Â71    7.16.10  Bends  7-Â73    7.16.11  Obstructions  or  penetrations  7-Â75    7.16.12  Branch  lines  without  a  structure  7-Â75    7.16.13  Expansions  and  contractions  (pipes  flowing  full)  7-Â76    7.16.14  Surcharge  chambers  7-Â78    7.16.15  Hydraulic  grade  line  (pipes  flowing  partially  full)  7-Â81    7.16.16  Plotting  of  HGL  on  longitudinal  section  7-Â82    7.16.17  Equivalent  pipe  determination  7-Â83   8.  Stormwater  outlets   8.1  Introduction  8-Â1   8.2  Factors  affecting  tailwater  level  8-Â1    8.2.1  Contributing  factors  8-Â1    8.2.2  Tidal  variation  8-Â1    8.2.3  Storm  surge  8-Â2    8.2.4  Wave  setup  8-Â2    8.2.5  Climate  change  8-Â2   8.3  Selection  of  tailwater  level  8-Â3    8.3.1  Tailwater  levels  for  tidal  outfalls  (oceans  and  bays)  8-Â3    8.3.2  Tailwater  levels  for  tidal  outfalls  (rivers  and  creeks)  8-Â3    8.3.3  Tailwater  levels  for  non-Âtidal  outfalls  8-Â4    8.3.4  Coincident  flooding  8-Â4   8.4  Design  of  tidal  outlets  8-Â5    8.4.1  All  tidal  outlets  8-Â6    8.4.2  Open  channel  outlets  (tidal)  8-Â6  Queensland  Urban  Drainage  Manual  2016  Edition  viii     8.4.3  Piped  outlets  (tidal)  8-Â7    8.4.4  Outlets  to  tidal  estuaries  and  waterways  8-Â7    8.4.5  Outlets  to  beaches  8-Â7    8.4.6  Outlets  subject  to  severe  wave  action  8-Â8    8.4.7  Outlets  discharging  through  acid  sulfate  soils  8-Â8   8.5  Design  of  non-Âtidal  outlets  8-Â9    8.5.1  General  8-Â9    8.5.2  Discharge  to  grass  swales  8-Â12    8.5.3  Partial  discharge  via  a  surcharge  chamber  8-Â13    8.5.4  Discharge  to  constructed  outlet  channels  8-Â13    8.5.5  Discharge  to  waterways  8-Â15    8.5.6  Discharge  to  lakes  8-Â16   8.6  Backflow  control  systems  8-Â17   8.7  Outlet  energy  dissipation  8-Â18    8.7.1  General  8-Â18    8.7.2  Rock  pad  outlet  structures  8-Â19   9.  Open  channels   9.1  General   9-Â1   9.2  Planning  issues  9-Â1    9.2.1  Legislative  requirements  9-Â1    9.2.2  Retention  of  natural  waterways  9-Â1    9.2.3  Rehabilitation  of  modified  waterways  9-Â2    9.2.4  Selection  of  channel  type  9-Â3   9.3  Open  channel  hydraulics  9-Â5    9.3.1  Hydraulic  analysis  9-Â5    9.3.2  Design  flow  9-Â5    9.3.3  Starting  tailwater  level  9-Â5    9.3.4  Channel  freeboard  9-Â5    9.3.5  Use  of  Manning's  equation  9-Â6    9.3.6  Energy  losses  at  channel  transitions  and  channel  bends  9-Â10   9.4  Constructed  channels  with  hard  linings  9-Â12    9.4.1  Contraction  and  expansion  joints  9-Â12    9.4.2  Step  irons  9-Â12    9.4.3  Pressure  relief  weep  holes  9-Â12    9.4.4  Treatment  of  channel  inverts  9-Â12    9.4.5  Lateral  protection  and  cut-Âoff  walls  9-Â12    9.4.6  Downstream  scour  protection  9-Â12    9.4.7  Rock  mattress  channels  9-Â12   9.5  Constructed  channels  with  soft  linings  9-Â13    9.5.1  Reducing  flow  velocities  in  channels  with  soft  linings  9-Â13    9.5.2  Treatment  of  channel  inverts  9-Â13    9.5.3  Recommended  maximum  average  flow  velocities  9-Â13    9.5.4  Recommended  maximum  channel  side  slopes  9-Â15    9.5.5  Tidal  channels  9-Â15   9.6  Natural  channel  design  9-Â16   9.7  Design  considerations  for  all  channels  9-Â17    9.7.1  Safety  issues  9-Â17    9.7.2  Access  and  maintenance  berms  9-Â17    9.7.3  Fish  passage  9-Â17  Queensland  Urban  Drainage  Manual  2016  Edition  ix     9.7.4  Terrestrial  passage  9-Â18    9.7.5  Connectivity  9-Â18    9.7.6  Human  movement  corridors  9-Â18    9.7.7  Open  channel  drop  structures  9-Â18    9.7.8  In-Âstream  lakes  and  wetlands  9-Â19    9.7.9  Design  and  construction  through  acid  sulfate  soils  9-Â19   9.8  Low-Âflow  channels  9-Â21    9.8.1  General  9-Â21    9.8.2  Design  capacity  of  low-Âflow  channels  9-Â21    9.8.3  Design  considerations  9-Â21    9.8.4  Edge  protection  for  low-Âflow  channels  9-Â22   9.9  Use  of  rock  in  drainage  channels  9-Â23    9.9.1  General  9-Â23    9.9.2  Rock  sizing  for  the  lining  of  drainage  channels  9-Â24    9.9.3  Rock  sizing  for  the  lining  of  batter  chutes  9-Â25    9.9.4  Rock  sizing  for  the  stabilisation  of  channel  banks  9-Â26    9.9.5  Rock  sizing  for  the  design  of  constructed  waterway  riffles  9-Â26    9.9.6  Rock  sizing  for  the  stabilisation  of  waterway  and  gully  chutes,  and  minor      dam  spillways  9-Â27    9.9.7  Rock  sizing  for  the  design  of  outlet  structures  9-Â32    9.9.8  Rock  sizing  for  the  design  of  energy  dissipaters  9-Â32   10.  Waterway  crossings   10.1  Bridge  crossings  10-Â1    10.1.1  General  10-Â1    10.1.2  Blockage  factors  10-Â1    10.1.3  Hydraulics  of  scupper  pipe  outflow  channels  10-Â1   10.2  Causeway  crossings  10-Â3   10.3  Ford  crossings  10-Â4   10.4  Culvert  crossings  10-Â4    10.4.1  Choice  of  design  storm  10-Â4    10.4.2  Consideration  of  flows  in  excess  of  the  nominated  design  storms  10-Â4    10.4.3  Location  and  alignment  of  culverts  10-Â5    10.4.4  Allowable  afflux  10-Â6    10.4.5  Culvert  sizing  considerations  10-Â6    10.4.6  Preliminary  sizing  of  culverts  10-Â6    10.4.7  Hydraulic  analysis  of  culverts  10-Â7    10.4.8  Culvert  elevation  and  gradient  10-Â7    10.4.9  Minimum  cover  10.8    10.4.10  Blockage  considerations  and  debris  deflector  walls  10-Â8    10.4.11  Sediment  control  issues  10-Â10    10.4.12  Roadway  barriers  10-Â10    10.4.13  Terrestrial  passage  requirements  10-Â11    10.4.14  Fish  passage  requirements  10-Â11    10.4.15  Outlet  scour  control  10-Â11    10.4.16  Safety  issues  10-Â11   Queensland  Urban  Drainage  Manual  2016  Edition  x   11.  Environmental  considerations   11.1  Introduction  11-Â1   11.2  Potential  waterway  impacts  11-Â2    11.2.1  General  11-Â2    11.2.2  Waterway  integrity  11-Â2    11.2.3  Effects  of  changes  in  tidal  exchange  11-Â2    11.2.4  Cause  and  effect  of  changes  in  catchment  hydrology  11-Â3    11.2.5  Fauna  issues  11-Â3   11.3  Stormwater  quality  management  11-Â3    11.3.1  General  11-Â3    11.3.2  Non-Âstructural  source  control  11-Â3    11.3.3  Stormwater  management  system  planning  issues  11-Â3    11.3.4  Water  Sensitive  Urban  Design  11-Â4    11.3.5  Water  Sensitive  Road  Design  11-Â4   11.4  Structural  controls  (treatment  techniques)  11-Â5    11.4.1  Selection  of  treatment  techniques  11-Â5   11.5  Stormwater  management  plans  11-Â7   12.  Safety  aspects   12.1  General   12-Â1   12.2  Risk  assessment  12-Â2   12.3  Example  safety  risk  ranking  system  12-Â3   12.4  Safety  fencing  12-Â7   12.5  Inlet  and  outlet  screens  12-Â9    12.5.1  General  12-Â9    12.5.2  Use  of  outlet  screens  12-Â9    12.5.3  Site  conditions  where  barrier  fencing  or  inlet/outlet  screens  may  not  be  appropriate  12-Â9    12.5.4  Inlet  screen  arrangement  12-Â10    12.5.5  Design  guidelines  for  inlet  and  outlet  screens  12-Â12    12.5.6  Hydraulics  of  inlet  screens  12-Â14    12.5.7  Hydraulics  of  outlet  screens  12-Â16    12.5.8  Dome  inlet  screens  12-Â17   13.  Miscellaneous  matters   13.1  Relief  drainage  or  upgrading  works  13-Â1    13.1.1  General  13-Â1    13.1.2  Assessment  procedures  and  remedial  measures  13-Â1    13.1.3  Design  alternatives  13-Â2    13.1.4  Priority  ranking  13-Â2    13.1.5  Design  criteria  13-Â3   13.2  Plan  presentation  13-Â3    13.2.1  Design  drawings  13-Â3    13.2.2  Standard  Drawings  13-Â4    13.2.3  As  Constructed  Drawings  13-Â4   13.3  Subsoil  drainage  13-Â4   13.4  Scheme  ranking  methods  13-Â5    13.4.1  Triple  bottom  line  method  13-Â5    13.4.2  Pseudo  benefit  cost  analysis  13-Â5    13.4.3  Hurrell  and  Lees  procedure  13-Â6  Queensland  Urban  Drainage  Manual  2016  Edition  xi    13.5  Symbols  and  abbreviations  13-Â7   13.6  Glossary  of  terms  13-Â13   14.  References   14-Â1   15.  Index    Index-Â1   Appendix  1   Pipe  flow  design  charts   A1.1  Introduction   Appendix  2   Structure  pressure  change  coefficient  charts   A2.1  Introduction   A2.2  General  guidance   A2.2.1  Effect  of  structure  shape   A2.2.2  Coefficients  Ku  and  Kw  (Hare  charts)   A2.2.3  Hare  charts  v.  Cade  and  Thompson   Chart  A2-Â3   Charts  A2-Â4  to  A2-Â7   Charts  A2-Â8  to  A2-Â31   Chart  A2-Â32   Chart  A2-Â33  (opposing  laterals)   Chart  A2-Â34  (offset  laterals)   Chart  A2-Â35   Chart  A2-Â36   Charts  A2-Â37  and  A2-Â38   Chart  A2-Â39   Charts  A2-Â40  to  A2-Â44    Appendix  3   Road  flow  capacity  charts   Queensland  Urban  Drainage  Manual  2016  Edition  xii   Preface  In  March  2012  the  Queensland  Floods  Commission  of  Inquiry  presented  its  final  report  to  the  Premier  of  Queensland.  The  recommendations  contained  within  this  report,  specifically  recommendation  10.8,  suggested  the  Queensland  Urban  Drainage  Manual  (QUDM)  be  reviewed  ‘to  determine  whether  it  requires  updating  or  improvement,  in  particular,  to  reflect  the  current  law  and  to  take  into  account  insights  gained  from  the  2010/2011  floods’.   This  recommendation  not  only  implied  QUDM  should  be  updated  to  reflect  the  outcomes  of  the  Inquiry,  but  also  any  other  relevant  insights  gained  from  other  sources  in  regards  to  the  2010–11  floods.  As  a  consequence  of  the  Inquiry’s  recommendations,  the  Department  of  Energy  and  Water  Supply  (DEWS)  developed  the  2013  Provisional  Edition  of  QUDM.  Feedback  was  sought  on  this  2013  edition,  and  in  light  of  the  feedback  received,  the  Fourth  Edition  of  QUDM  has  drafted.   The  recommendations  from  the  Queensland  Floods  Commission  of  Inquiry’s  report  that  are  considered  most  relevant  to  the  QUDM  are  summarised  below:   The  need  to  update  QUDM  with  respect  to  current  legislation  (Recommendation  10.8).   The  need  for  improved  consideration  of  flows  in  excess  of  the  nominated  major  storm  (Recommendation  2.13).   The  need  to  design  stormwater  systems  to  improve  the  state’s  resilience  to  extreme  storm  and  flood  events  (general  discussion  within  Chapter  2  of  the  report).   The  need  for  greater  consideration  of  flood  protection  of  essential  community  infrastructure  and  the  management  of  flood  evacuation  routes  (Recommendations  7.24,  7.25,  8.7,  10.11  &  10.20).  Even  though  QUDM  is  not  intended  as  a  floodplain  management  guideline,  it  does  provide  guidance  on  design  standards  for  cross  drainage  structures  such  as  culverts,  which  is  linked  to  the  flood  immunity  of  some  evacuation  routes.   The  need  for  better  design  guidance  on  preventing  the  flooding  of  commercial  buildings,  basements  and  non-Âhabitable  floors  of  buildings  (Recommendation  7.4).  The  link  to  QUDM  is  through  the  setting  of  freeboards  for  major  storm  flows  along  roads.   The  need  for  better  design  guidance  on  the  management  of  flood  impacts  on  areas  of  manufacture  or  storage  of  bulk  hazardous  materials  (Recommendations  7.11  &  7.13).  The  link  to  QUDM  is  through  the  design  of  overland  flow  paths  that  pass  through  industrial  areas.   The  need  for  better  guidance  on  the  design  and  usage  of  stormwater  backflow  devices  (Recommendation  10.14).   Notable  changes  within  this  2016  edition  of  QUDM  include:   A  significant  change  in  the  layout  of  the  document.  A  partner  document,  ‘A  Background  to  QUDM’  (herein  referred  to  as  the  Background  Notes),  was  drafted  that  contains  the  bulk  of  the  ‘discussion’,  ‘explanatory  notes’,  ‘background  theoretical  work’,  and  ‘educational  material’  that  either  appeared  within  the  2013  edition,  or  had  been  prepared  during  the  drafting  of  the  2007,  2013  &  2016  editions  of  QUDM.  This  means  the  main  QUDM  document  now  returns  to  a  more  condensed  technical  document  similar  to  its  original  1992  format.   Significant  more  discussion  on  the  science  of  stormwater  management,  and  the  theory  of  stormwater  hydrology  and  detention/retention  systems  has  been  introduced  to  the  Background  Notes.   The  lawful  point  of  discharge  test  has  been  modified  to  recognise  the  lawful  condition  associated  with  minor  changes  in  stormwater  runoff  that  do  not  result  in  an  actionable  nuisance.  Queensland  Urban  Drainage  Manual  2016  Edition  xiii    The  ‘Stream  Velocity  Method’  for  estimating  the  Rational  Method’s  time  of  concentration  for  urban  waterways  has  been  modified  based  on  an  analysis  of  flood  model  data  in  Brisbane.   Significant  more  information  has  been  supplied  on  the  application  of  detention  and  retention  systems  for  the  protection  of  urban  waterways  and  aquatic  ecosystems.   A  new  method  is  presented  for  the  ‘initial’  sizing  of  detention  basins.   A  new  section  has  been  introduced  into  Chapter  7  that  provides  an  overview  of  the  rules  and  recommendations  for  the  setting  of  minimum  floor  levels.   Greater  recognition  is  given  to  the  differences  between  the  design  recommendations  for  local  roads  and  those  for  state-Âcontrolled  roads.   The  introduction  of  Level  ‘0’  allotment  drainage  that  improves  the  potential  for  the  integration  of  Water  Sensitive  Urban  Design  principles  into  allotment  drainage.   An  update  of  the  Level  III  allotment  drainage  tables  for  allotment  and  roof  surface  areas  consistent  with  current  (2016)  conditions.   Update  on  the  integration  of  fish  passage  investigations  into  open  channel  design.   Introduction  of  a  new  method  for  improving  child  safety  around  field  (drop)  inlets.   The  QUDM  partners  recognise  that  this  Manual  is  not  a  stand-Âalone  planning  and  design  guideline  for  stormwater  management.  It  must  be  used  in  coordination  with  other  recognised  manuals  covering  topics  such  as:   Floodplain  management  policies/guidelines   Water  Sensitive  Urban  Design   Water  Sensitive  Road  Design   Natural  Channel  Design   Waterway  management  including  fauna  passage   Erosion  &  Sediment  Control   Bridge  and  culvert  design  manuals   Australian  Rainfall  and  Runoff  (ARR)   Australian  Runoff  Quality  (ARQ)   various  Australian  Standards  on  product  manufacture  and  installation   Whilst  there  are  significant  areas  of  overlap,  QUDM  is  not  intended  to  act  as  a  floodplain  management  manual.  Where  appropriate,  this  Manual  directs  stormwater  designers  and  regulators  to  other  publications  for  information  on  floodplain  management  issues.   The  information  presented  within  this  edition  of  QUDM  on  stormwater  quality  treatment  and  the  management  of  environmental  impacts  is  not  comprehensive  and  should  not  be  used  to  supersede  other  more  comprehensive  and  locally  relevant  manuals  and  guidelines.   Queensland  Urban  Drainage  Manual  2016  Edition  xiv   Acknowledgments  The  preparation  of  the  original  1992  edition  was  commissioned  jointly  by  the  Queensland  Department  of  Primary  Industries  (Water  Resources),  the  Institute  of  Municipal  Engineering  Australia  (Queensland  Division)  and  the  Brisbane  City  Council.   Funding  for  the  drafting  of  this  fourth  edition  was  supplied  by  the  Queensland  Government,  Department  of  Energy  and  Water  Supply.   Review  Panel  (fourth  edition,  2016):  Ross  Guppy  (Chair),  Institute  of  Public  Works  Engineering  Australasia  (Queensland  Division)  Russell  Cuerel,  Department  of  Energy  and  Water  Supply  Tony  Loveday,  RMA  Engineers  Pty  Ltd  Neil  McKee  Phil  McKone,  Livingstone  Shire  Council  Hamid  Mirfenderesk,  City  of  Gold  Coast  Ouswatta  Perera,  Brisbane  City  Council  Richard  Priman,  Department  of  Energy  and  Water  Supply  Chris  Russell,  Department  of  Transport  and  Main  Roads  Frank  Scheele,  South  Burnett  Regional  Council  David  Simpson,  Brisbane  City  Council  Grant  Witheridge,  Catchments  &  Creeks  Pty.  Ltd.  (redraft  and  artwork)   Sarah  Hausler,  McCullough  Robertson  Lawyers  (review  of  Chapter  3)   Project  team  (third  edition,  2013):  Russell  Cuerel,  Department  of  Energy  and  Water  Supply  Upali  Jayasinghe,  Department  of  Energy  and  Water  Supply  Grant  Witheridge,  Department  of  Energy  and  Water  Supply   Steering  committee  members  (second  edition,  2007):  Bob  Adamson,  Brisbane  City  Council  Peter  Barnes,  Brisbane  City  Council  Suzanna  Barnes-ÂGillard,  Institute  of  Public  Works  Engineering  Australia  Russell  Cuerel,  Department  of  Natural  Resources  and  Water  Neville  Gibson,  Brisbane  City  Council  Allan  Herring,  Pine  Rivers  Shire  Council  Upali  Jayasinghe,  Department  of  Natural  Resources  and  Water  Graham  Jenkins,  Queensland  University  of  Technology  Chris  Lawson,  Connell  Wagner  Patrick  Murphy,  Boonah  Shire  Council  Geoff  Stallman,  Environmental  Protection  Agency  Bill  Weeks,  Department  of  Main  Roads  Grant  Witheridge,  Catchments  &  Creeks  Pty.  Ltd.  (first  draft  and  artwork)   Steering  committee  members  (first  edition,  1992):  Mr  R  I  Rees,  Department  of  Primary  Industries,  Water  Resources  Mr  R  Priman,  Department  of  Primary  Industries,  Water  Resources  Mr  J  F  Jolly,  Institute  of  Municipal  Engineering  Australia,  Queensland  Division  Mr  L  M  Yates,  Institute  of  Municipal  Engineering  Australia,  Queensland  Division  Mr  T  W  Condon,  Brisbane  City  Council  Mr  R  A  Halcrow,  Brisbane  City  Council  Mr  D  G  Carroll,  Brisbane  City  Council  Queensland  Urban  Drainage  Manual  2016  Edition  xv    Project  team  (first  edition,  1992):  Mr  N  D  Jones,  Neville  Jones  &  Associates  Pty  Ltd  Mr  G  M  Anderson,  Neville  Jones  &  Associates  Pty  Ltd  Mr  C  H  Lawson,  B.E.(Hons.),  Neville  Jones  &  Associates  Pty  Ltd  Mr  D  G  Ogle,  Australian  Water  Engineering  Mr  B  C  Tite,  Australian  Water  Engineering   The  following  images  (2016  edition)  have  been  supplied  courtesy  of  Catchments  &  Creeks  Pty  Ltd  and  remain  the  property  of  Catchments  &  Creeks  Pty  Ltd:  7.5.4,  7.5.5,  7.5.6,  7.5.7,  7.6.1,  7.6.2,  7.6.3,  7.6.4,  7.16.4(a),  (b)  &  (c),  7.16.9(a)  &  (b),  7.16.10,  7.16.11,  7.16.12,  7.16.13,  8.2,  8.3,  8.4,  8.5,  8.6,  8.7,  8.8,  8.9,  8.10,  8.11,  8.12,  8.13,  9.2,  10.4,  10.5,  10.6,  10.7,  10.8,  12.1,  12.2,  12.3,  12.4,  12.5,  12.6,  12.7,  12.13,  12.16.  BN4.4.1,  BN4.4.2,  BN4.4.3,  BN  4.6.11.1,  BN  4.6.11.2,  BN  4.6.11.3,  BN  4.6.11.4,  BN  4.6.11.5,  BN  4.6.11.6,  BN  4.6.11.7,  BN  4.6.11.8,  BN  4.6.11.9,  BN  4.6.11.10,  BN  4.6.11.11,  BN  4.6.11.12,  BN  5.4.1,  BN  5.4.2,  BN  7.16.4(a)&(b),  BN  7.16.5(a)&(b),  BN  7.16.6(a)&(b),  BN  7.16.7(a)&(b),  BN  8.3.1,  BN  8.7.1,  BN  8.7.2,  BN  8.7.3,  BN  8.7.4,  BN  8.7.5,  BN  8.7.6,  BN  8.7.7,  BN  8.7.8,  BN  8.7.9,  BN  8.7.10,  BN  9.8,  BN  9.9,  BN  9.10,  BN  9.11,  BN  9.12,  BN  9.13,  BN  9.14,  BN  9.15,  BN  10.4.1,  BN  10.4.2,  BN  10.4.3,  BN  10.4.4,  BN  10.4.5,  BN  12.5.1.  Photos:  BN  9.5.1,  9.5.2.  Queensland  Urban  Drainage  Manual  2016  Edition  xvi   List  of  tables  Table  2.2.1  Key  stormwater  design  parameters  and  desired  outcomes  2-Â4  Table  3.15.1  Example  of  possible  statutory  approvals  3-Â18  Table  4.5.1  Fraction  impervious  vs.  development  category  4-Â7  Table  4.5.2  Table  of  frequency  factors  4-Â8  Table  4.5.3  Table  of  C10  values  4-Â8  Table  4.5.4  C10  values  for  zero  fraction  impervious  4-Â8  Table  4.6.1  Summary  of  typical  components  of  time  of  concentration  4-Â10  Table  4.6.2  Recommended  standard  inlet  times  4-Â11  Table  4.6.3  Recommended  roof  drainage  system  travel  times  4-Â12  Table  4.6.4  Recommended  maximum  length  of  overland  sheet  flow  4-Â13  Table  4.6.5  Surface  roughness  or  retardance  factors  4-Â14  Table  4.6.6  Modified  Stream  Velocity  method  for  catchment  areas  of  5  to  100  km2  4-Â21  Table  4.9.1  Typical  single  storm  event  volumetric  runoff  coefficients  for  various  Soil     Hydrologic  Groups  4-Â24  Table  4.9.2  Typical  infiltrations  rates  for  various  Soil  Hydrological  Groups  4-Â25  Table  5.5.1  Summary  of  design  requirements  for  detention/retention  systems  5-Â6  Table  5.6.1  Recommended  initial  loss  values  for  use  in  sizing  detention  basins  5-Â7  Table  5.6.2  Typical  infiltrations  rates  for  various  soil  hydrologic  groups  5-Â8  Table  5.6.3  Selection  of  initial  loss  values  for  different  design  functions  5-Â8  Table  5.7.1  Guidelines  for  basin  freeboard  requirements  5-Â11  Table  5.9.1  Criteria  for  basin  outlet  structures  5-Â13  Table  5.10.1  Recommendations  for  extreme  flood  5-Â14  Table  5.10.2  Hazard  categories  for  referable  dams  5-Â15  Table  7.3.1  Recommended  design  average  recurrence  intervals  (ARI)  and  annual     exceedence  probabilities  (AEP)  for  the  minor  system  7-Â5  Table  7.3.2  Recommended  design  average  recurrence  intervals  (ARI)  and  annual     exceedence  probabilities  (AEP)  for  the  combined  minor/major  system  7-Â5  Table  7.3.3  Development  categories  7-Â7  Table  7.3.4  Summary  of  design  requirements  for  overland  flow  paths  7-Â8  Table  7.3.5  Flow  depth  and  width  limitations  for  the  minor  storm  7-Â14  Table  7.3.6  Flow  depth  and  width  limitations  for  the  major  storm  7-Â14  Table  7.4.1  Recommended  design  storm  for  road  drainage  design  7-Â17  Table  7.4.2   Flow  limits  for  'longitudinal'  flow  during  MINOR  STORM  7-Â18  Table  7.4.3   Flow  limits  for  'transverse'  flow  during  MINOR  STORM  7-Â18  Table  7.4.4  Flow  limits  for  'longitudinal'  flow  during  MAJOR  STORM  7-Â19  Table  7.4.5  Flow  limits  for  'transverse'  flow  during  MAJOR  STORM  7-Â19  Table  7.4.6  Recommended  values  of  Manning's  roughness  coefficient  and  flow  correction   factor  for  use  in  Izzard's  equation  7-Â22  Table  7.5.1  Provision  for  blockage  at  kerb  inlets  7-Â23  Table  7.6.1  Recommended  maximum  spacing  of  access  chambers  7-Â31  Table  7.6.2  Recommended  maximum  reduction  in  pipe  size  -  SINGLE  PIPES  7-Â32  Table  7.8.1  Recommended  minimum  spacing  of  multiple  pipes  7-Â38  Queensland  Urban  Drainage  Manual  2016  Edition  xvii   Table  7.10.1  Recommended  minimum  cover  over  pipes  7-Â41  Table  7.11.1  Acceptable  flow  velocities  for  pipes  and  box  sections  7-Â42  Table  7.12.1  Acceptable  pipe  grades  for  pipes  flowing  full  7-Â43  Table  7.13.1  Design  of  roof  gutters  and  downpipes  7-Â44  Table  7.13.2  Design  storm  for  underground  allotment  drainage  (not  roof  drainage)  7-Â44  Table  7.13.3  National  construction  codes  relating  to  allotment  drainage  7-Â47  Table  7.13.4   Design  recommendations  for  rear  of  allotment,  inter-Âallotment  drainage         systems  7-Â51  Table  7.13.5  Design  standard  for  Level  0  drainage  system  7-Â53  Table  7.13.6  Design  standard  for  Level  I  drainage  system  7-Â54  Table  7.13.7  Design  standard  for  Level  II  drainage  system  7-Â55  Table  7.13.8  Recommended  design  criteria  for  Level  II  rear  of  allotment  drainage  system  7-Â56  Table  7.13.9  Design  standard  for  Level  III  drainage  system  7-Â57  Table  7.13.10  Recommended  design  criteria  for  Level  III  rear  of  allotment  drainage  system  7-Â58  Table  7.13.11  Design  standard  for  Level  IV  drainage  system  7-Â59  Table  7.13.12  Design  standard  for  Level  V  drainage  system  7-Â60  Table  7.16.1  Minimum  freeboard  recommendations  for  kerb  inlets  and  pits  7-Â66  Table  7.16.2  Application  of  freeboard  recommendations  7-Â67  Table  7.16.3  Recommended  values  for  surface  roughness  (average  pipe  condition)  7-Â68  Table  7.16.4  Potential  decrease  in  pressure  change  coefficient  as  a  result  of  benching  7-Â70  Table  7.16.5  Entrance  (energy)  loss  coefficients  7-Â72  Table  7.16.6  Pressure  loss  coefficients  at  mitred  fittings  7-Â74  Table  7.16.7  Energy  loss  coefficients  for  flow  expansions  and  contractions  within  pipes  7-Â77  Table  7.16.8  Pressure  change  coefficients  for  expansions  and  contractions  7-Â77  Table  7.16.9  Mitre  bend  outlet  length  correction  factor  7-Â80  Table  7.16.10  Trial  values  of  KU  for  use  in  determining  HGL  under  partially  full  flow  conditions7-Â82  Table  8.3.1  Suggested  tailwater  levels  for  discharge  to  tidal  waterways  8-Â3  Table  8.5.1  Minimum  and  maximum  desirable  elevation  of  pipe  outlets  above  receiving       water  bed  level  for  ephemeral  waterways  8-Â15  Table  8.7.1  Typical  bank  scour  velocities  8-Â18  Table  8.7.2  Minimum  thickness  (T)  of  rock  pad  8-Â21  Table  9.2.1  Typical  attributes  of  various  constructed  drainage  channels  9-Â4  Table  9.3.1  Recommended  channel  freeboard  9-Â6  Table  9.3.2  Typical  minimum  design  roughness  values  for  vegetated  channels  9-Â7  Table  9.3.3  Manning's  roughness  of  rock  lined  channels  with  shallow  flow  9-Â8  Table  9.3.4  Manning's  roughness  for  grassed  channels  (50-Â150  mm  blade  length)  9-Â8  Table  9.3.5  Channel  transition  energy  loss  coefficients  (C u)  9-Â10  Table  9.5.1  Suggested  permissible  flow  velocities  for  water  passing  through/over         vegetation  9-Â13  Table  9.5.2  Maximum  permissible  velocities  for  consolidated  bare  earth  channels  and     grassed  channels  9-Â14  Table  9.5.3  Suggested  maximum  bank  gradient  9-Â15  Table  9.8.1  Low-Âflow  channels  within  grassed  or  hard-Âlined  channels  9-Â21  Table  9.9.1  Typical  thickness  (T)  of  two  rock  layers  9-Â23  Queensland  Urban  Drainage  Manual  2016  Edition  xviii   Table  9.9.2  Recommended  rock  sizing  equation  for  non-Âvegetated  rock-Âlined  drains  9-Â24  Table  9.9.3  Recommended  K-Âvalues  for  use  in  rock  sizing  equations  9-Â25  Table  9.9.4  Recommended  rock  sizing  equations  for  rock-Âlined  batter  chutes  9-Â25  Table  9.9.5  Recommended  safety  factor  for  use  in  determining  rock  size  9-Â25  Table  9.9.6  Recommended  distribution  of  rock  size  for  constructed  riffles  9-Â27  Table  9.9.7   Recommended  rock  sizing  equation  for  partially  drowned  waterway  chutes  9-Â28  Table  9.9.8  Recommended  safety  factor  for  use  in  designing  waterway  and  gully  chutes  9-Â29  Table  9.9.9  Waterway  chutes:  uniform  flow  conditions,  sr  =  2.4,  d50/d90  =  0.5,  'SF  =  1.2'  9-Â30  Table  9.9.10  Waterway  chutes:  uniform  flow  conditions,  sr  =  2.4,  d50/d90  =  0.5,  'SF  =  1.5'  9-Â31  Table  10.1.1  Suggested  blockage  factors  for  bridges  10-Â1  Table  10.4.1  Suggested  blockage  factors  for  culverts  10-Â9  Table  12.1.1  Flow  hazard  regimes  for  infants,  children  and  adults  12-Â2  Table  12.3.1  Contact  classification  12-Â3  Table  12.3.2  Potential  safety  risks  associated  with  a  conduit  flowing  full  12-Â3  Table  12.3.3  Potential  safety  risks  associated  with  the  length  of  the  conduit  12-Â4  Table  12.3.4  Potential  safety  risks  associated  with  flow  conditions  within  a  conduit  12-Â4  Table  12.3.5  Potential  safety  risks  associated  with  flow  conditions  at  the  outlet  of  a  conduit  12-Â5  Table  12.3.6  Risk  ranking  matrix  12-Â5  Table  12.3.7  A  guide  to  mitigation  options  for  various  safety  risks  12-Â6  Table  12.5.1  Potential  beneficial  and  adverse  consequences  of  inlet  and  outlet  screens  12-Â9  Table  12.5.2  Maximum  clear  spacing  of  vertical  bars  12-Â12  Table  12.5.3  Recommended  slope  of  inlet  safety  screens  12-Â12  Table  12.5.4  Advantages  and  safety  risks  associated  with  dome  inlet  screens  12-Â17  Table  12.5.5  Standard  dimensions  of  dome  inlet  safety  screen  12-Â19    Queensland  Urban  Drainage  Manual  2016  Edition  xix   List  of  figures  Figure  4.1  Application  of  standard  inlet  time  4-Â11  Figure  4.2  Typical  roof  drainage  systems  (residential)  4-Â12  Figure  4.3  Typical  roof  drainage  systems  (industrial)  4-Â12  Figure  4.4  Overland  sheet  flow  times  (shallow  sheet  flow  only)  4-Â13  Figure  4.5  Flow  travel  time  in  pipes  and  channels  4-Â16  Figure  4.6  Kerb  and  channel  flow  time  using  Manning’s  equation  4-Â17  Figure  4.7  Kerb  and  channel  flow  velocity  using  Izzard’s  equation  4-Â18  Figure  4.8  Derivation  of  the  equal-Âarea  slope  (Se)  of  main  stream  4-Â21  Figure  5.1  Additional  temporal  patterns  for  use  in  design  of  embankments  and                high-Âlevel  outlets  5-Â10  Figure  5.2  Typical  basin  outlets  for  small  basins  5-Â12  Figure  7.3.1  Flow  chart  for  the  determination  of  minimum  floor  levels  for  Class  1  buildings7-Â12  Figure  7.3.2  Major  storm  flow  design  criteria  7-Â15  Figure  7.3.3  Major  storm  flow  design  criteria  7-Â16  Figure  7.4.1  Typical  flow  width  criteria  (minor  storm)  7-Â20  Figure  7.4.2  Half  road  flow  7-Â22  Figure  7.5.1  Flow  chart  for  determining  kerb  inlet  positions  on-Âgrade  7-Â25  Figure  7.5.2  A  sag  in  a  road  with  supercritical  approach  flows  7-Â26   Figure  7.5.3  Limiting  condition  for  a  sag  inlet  to  act  as  an  on-Âgrade  inlet  (n  =  0.013)  7-Â26  Figure  7.5.4  Field  inlet  operating  under  weir  flow  7-Â28  Figure  7.5.5  Field  inlet  operating  under  free  (atmospheric)  orifice  flow  7-Â29  Figure  7.5.6  Field  inlet  operating  under  fully  drowned  (non-Âatmospheric)  conditions  7-Â29  Figure  7.5.7  Minimum  lip  width  required  for  scour  protection  7-Â30  Figure  7.6.1   Flow  lines  resulting  from  inflow  pipe  directed  at  pit  centre  7-Â32  Figure  7.6.2   Inflow  pipe  directed  at  centre  of  outflow  pipe  7-Â32  Figure  7.6.3  Bellmouth  entrance  to  outlet  pipe   7-Â32  Figure  7.6.4  Inlet  chamber  showing  water  level  well  above  outlet  obvert  7-Â32  Figure  7.13.1  (a)  to  (e)  Levels  of  roof  and  allotment  drainage  system  7-Â45  Figure  7.13.1  (f)  Level  V  of  roof  and  allotment  drainage  system  7-Â46  Figure  7.13.2  (a)  Inter-Âallotment  drainage  systems  –  Option  1  7-Â49  Figure  7.13.2  (b)  Inter-Âallotment  drainage  systems  –  Option  2  7-Â49  Figure  7.16.1  Hydraulics  for  a  single  pipe  reach  7-Â64  Figure  7.16.2  (a)  Tailwater  above  obvert  7-Â65  Figure  7.16.2  (b)  Tailwater  below  obvert  7-Â65  Figure  7.16.2  (c)  Tailwater  below  pipe  invert  7-Â65  Figure  7.16.3  Nomenclature  at  structures  7-Â69  Figure  7.16.5  (a)  Projecting  from  fill  7-Â71  Figure  7.16.5  (b)  Headwall  with  wing  walls  7-Â71  Figure  7.16.5  (c)  Mitred  to  conform  to  fill  slope  7-Â71  Figure  7.16.5  (d)  Hooded  entrance  7-Â71  Figure  7.16.6  Bend  loss  coefficients  7-Â74  Figure  7.16.7  Penetration  loss  coefficients  7-Â75  Figure  7.16.8  Branch  line  nomenclature  7-Â76  Figure  7.16.9  Flow  conditions  for  sudden  expansion  and  contraction  7-Â76  Queensland  Urban  Drainage  Manual  2016  Edition  xx   Figure  7.16.10  Surcharge  chamber  with  or  without  an  outlet  pipe  7-Â78  Figure  7.16.11  Surcharge  chamber  with  multiple  inflow  pipes  7-Â78  Figure  7.16.12  Surcharge  chamber  with  outlet  pipe  of  equivalent  size  7-Â79  Figure  7.16.13  Surcharge  chamber  with  smaller  low-Âflow  outlet  pipe  7-Â79  Figure  7.16.14  HGL  determination  for  pipes  flowing  partially  full  7-Â81  Figure  8.1  Tidal  variations  8-Â1  Figure  8.2  Tidal  channel  with  high  level  bypass  channel  8-Â6  Figure  8.3  Possible  arrangement  of  sediment  backflow  control  device  in  coastal  zones  8-Â8  Figure  8.4  Minimum  desirable  outlet  setback  8-Â10  Figure  8.5  Discharge  to  swale  or  spoon  drain  8-Â12  Figure  8.6  Recommended  scour  protection  at  crest  of  drop  chutes  8-Â12  Figure  8.7  Partial  discharge  through  a  surcharge  chamber  8-Â13  Figure  8.8  Discharge  into  constructed  outlet  channel  8-Â14  Figure  8.9  Outlet  channel  with  benching  to  allow  flow  bypassing  of  a  heavily  vegetated     low-Âflow  channel  8-Â14  Figure  8.10  Discharge  directly  into  a  watercourse  8-Â15  Figure  8.11  Sizing  of  rock  pads  for  'single'  pipe  outlets  8-Â19  Figure  8.12  Sizing  of  rock  pads  for  'multiple'  pipe  outlets  8-Â20  Figure  8.13  Typical  layout  of  a  rock  pad  outlet  structure  8-Â21  Figure  9.1  Channel  freeboard  9-Â6  Figure  9.2  Introduction  of  bypass  channels  on  tidal  drains  9-Â15  Figure  10.1  Subcritical  flow  with  subcritical  tailwater  10-Â2  Figure  10.2  Subcritical  flow  with  critical  depth  at  tailwater  10-Â2  Figure  10.3  Combined  subcritical  and  supercritical  flow  10-Â3  Figure  10.4  Example  of  overtopping  flows  at  an  urban  culvert  crossing  10-Â5  Figure  10.5  Minimum  desirable  flow  depth  to  achieve  fish  passage  10-Â7  Figure  10.6  Multi-Âcell  culvert  with  'wet'  and  'dry'  cells  10-Â8  Figure  10.7  Culvert  inlet  with  debris  deflector  walls  10-Â10  Figure  10.8  Floodplain  culvert  adjacent  a  bridge  crossing  10-Â11  Figure  12.1  Dome  inlet  screen  12-Â10  Figure  12.2  Major  inlet  structure  12-Â10  Figure  12.3  Hinged  inlet  bar  screen  12-Â10  Figure  12.4  Bar  screen  with  upper  stepping  board  inlet  screen  12-Â11  Figure  12.5  Fixed  stepping  board  inlet  screen  12-Â11  Figure  12.6  Alternative  major  inlet  structure  12-Â11  Figure  12.7  Design  requirements  for  inlet  screens  12-Â13  Figure  12.8  Inlet  screen  mounted  away  from  the  inlet  12-Â14  Figure  12.9  Inlet  screen  mounted  close  to  the  inlet  12-Â15  Figure  12.10  Outlet  screen  with  minimal  blockage  12-Â16  Figure  12.11  Partially  blocked  outlet  screen  12-Â16  Figure  12.12  Outlet  screen  mounted  away  from  the  outlet  12-Â17  Figure  12.13  Minimum  internal  lip  width  requirements  of  dome  safety  inlet  screen  12-Â18  Figure  12.14  Straight-Âedged  drop  inlet  12-Â19  Figure  12.15  Drop  inlet  with  raised  lip  12-Â19  Figure  12.16  Diagrammatic  representation  of  approach  flow  angle  (plan  view)  12-Â20   Queensland  Urban  Drainage  Manual  2016  Edition  xxi   Appendix  1  –  Pipe  flow  design  charts  A1-Â1  Pipe  flow  capacity  chart  (Manning's  equation)  A1-Â2  Pipe  flow  capacity  chart  (Manning's  equation)  A1-Â3  Hydraulic  elements  for  pipes  flowing  partially  full   Appendix  2  –  Structure  pressure  change  coefficient  charts  A2-Â1  Index  to  pressure  change  coefficient  charts  A2-Â2  Index  to  pressure  and  energy  loss  analysis  charts  A2-Â3  Pressure  head  change  coefficients  for  rectangular  inlet  with  grate  flow  only  modified  from  DOT  (1992)  A2-Â4  Pressure  head  change  and  water  surface  elevation  coefficients  for  straight  through  flow  for  submergence  ratio,  S/Do  =  2.5   (Source:  Hare,  1980)  A2-Â5  Pressure  head  change  and  water  surface  elevation  coefficients  for  22.5o  bends  at  pit  junctions,  with  branch  point  on  downstream  face  of  pit,  and  for  a  submergence  ratio  S/Do  =  2.5   (Source:  Hare,  1980)  A2-Â6  Pressure  head  change  and  water  surface  elevation  coefficients  for  45o  bends  at  pit  junctions  with  branch  point  located  on  downstream  face  of  pit  for  a  submergence  ratio,  S/Do  =  2.5   (Source:  Hare,  1980)  A2-Â7  Pressure  head  change  and  water  surface  elevation  coefficients  for  45o  bends  at  pit  junctions  with  branch  point  located  on  downstream  face  of  pit  for  a  submergence  ratio,  S/Do  =  2.5   (Source:  Hare,  1980)  A2-Â8  Pressure  head  change  coefficients  (Ku)  for  22.5o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â9  Pressure  head  change  coefficients  (Ku)  for  22.5o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â10  Water  surface  elevation  coefficients  (Kw)  for  22.5o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â11  Water  surface  elevation  coefficients  (Kw)  for  22.5o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â12  Pressure  head  change  coefficients  (Ku)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â13  Pressure  head  change  coefficients  (Ku)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â14  Water  surface  elevation  coefficients  (Kw)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â15  Water  surface  elevation  coefficients  (Kw)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â16  Pressure  head  change  coefficients  (Ku)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â17  Pressure  head  change  coefficients  (Ku)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  Queensland  Urban  Drainage  Manual  2016  Edition  xxii   A2-Â18  Water  surface  elevation  coefficients  (Kw)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â19  Water  surface  elevation  coefficients  (Kw)  for  45o  bends  at  pit  junctions  with  branch  point  located  on  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â20  Pressure  head  change  coefficients  (Ku)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  downstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â21  Pressure  head  change  coefficients  (Ku)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  downstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â22  Water  surface  elevation  coefficients  (Kw)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  downstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â23  Water  surface  elevation  coefficients  (Kw)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  downstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â24  Pressure  head  change  coefficients  (Ku)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â25  Pressure  head  change  coefficients  (Ku)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â26  Water  surface  elevation  coefficients  (Kw)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  upstream  face  of  pit  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â27  Water  surface  elevation  coefficients  (Kw)  for  67.5o  bends  at  pit  junctions  with  branch  point  located  near  the  upstream  face  of  pit  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â28  Pressure  head  change  coefficients  (Ku)  for  90o  bends  at  pit  junctions  for  a  submergence  ratio  S/Do  =  2.5  (Source:  Hare,  1980)  A2-Â29  Pressure  head  change  coefficients  (Ku)  for  90o  bends  at  pit  junctions  for  submergence  ratios  S/Do  =  1.5,  2.0,  3.0  and  4.0  (Source:  Hare,  1980)  A2-Â30  Water  surface  elevation  coefficients  (Kw)  for  90o  bends  at  pit  junctions  for  a  submergence  ratio,  S/Do  =  2.5   (Source:  Hare,  198