∫ (x² + 4x³ + 2) / (6x) dx

Question image

Understand the Problem

The question involves calculating the integral of the function (x² + 4x³ + 2) / (6x) with respect to x. This requires applying integration techniques.

Answer

$$ \frac{x^2}{12} + \frac{2x^3}{9} + \frac{1}{3} \ln |x| + C $$
Answer for screen readers

The integral is: $$ \frac{x^2}{12} + \frac{2x^3}{9} + \frac{1}{3} \ln |x| + C $$

Steps to Solve

  1. Simplify the integrand

Start by simplifying the expression ( \frac{x^2 + 4x^3 + 2}{6x} ). Divide each term in the numerator by ( 6x ): [ \frac{x^2}{6x} + \frac{4x^3}{6x} + \frac{2}{6x} = \frac{x}{6} + \frac{2}{3}x^2 + \frac{1}{3x} ]

  1. Set up the integral

Now, rewrite the integral: [ \int \left( \frac{x}{6} + \frac{2}{3}x^2 + \frac{1}{3x} \right) , dx ]

  1. Integrate each term

Integrate each term separately: [ \int \frac{x}{6} , dx = \frac{1}{6} \cdot \frac{x^2}{2} = \frac{x^2}{12} ] [ \int \frac{2}{3}x^2 , dx = \frac{2}{3} \cdot \frac{x^3}{3} = \frac{2x^3}{9} ] [ \int \frac{1}{3x} , dx = \frac{1}{3} \ln |x| ]

  1. Combine the results

Now combine the results of the integrals: [ \int \frac{x^2 + 4x^3 + 2}{6x} , dx = \frac{x^2}{12} + \frac{2x^3}{9} + \frac{1}{3} \ln |x| + C ]

  1. Final Form

Thus, the final form of the integral is: [ \frac{x^2}{12} + \frac{2x^3}{9} + \frac{1}{3} \ln |x| + C ]

The integral is: $$ \frac{x^2}{12} + \frac{2x^3}{9} + \frac{1}{3} \ln |x| + C $$

More Information

This integral combines polynomial and logarithmic integration techniques. The constant ( C ) represents the constant of integration, which can vary depending on the context.

Tips

  • Confusing the integration of different types of functions, particularly logarithmic versus polynomial.
  • Forgetting to include the constant of integration ( C ).
Thank you for voting!
Use Quizgecko on...
Browser
Browser