What's the message? Decode the message by performing the following radical operations. Write the words corresponding to the obtained value in the box provided.
Understand the Problem
The question is asking to perform various radical operations to decode a message. Each operation results in a numerical or variable expression that needs to be matched with a corresponding word or phrase from the instructions.
Answer
The values decoded are \( \frac{\sqrt{5}}{2}, 7, 36, 6, 3x^4y^3\sqrt{g}, 10\sqrt{3}a^{3/2}, 9 \).
Answer for screen readers
The answers corresponding to the radical calculations are:
- ( \frac{\sqrt{5}}{2} )
- ( 7 )
- ( 36 )
- ( 6 )
- ( 3x^4y^3\sqrt{g} )
- ( 10\sqrt{3}a^{3/2} )
- ( 9 )
Steps to Solve
- Calculate ( \sqrt{2} \cdot \sqrt{5/8} )
First, multiply the square roots: $$ \sqrt{2} \cdot \sqrt{5/8} = \sqrt{2 \cdot \frac{5}{8}} = \sqrt{\frac{10}{8}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} $$
- Calculate ( \sqrt{7} \cdot \sqrt{7} )
Next, simplify: $$ \sqrt{7} \cdot \sqrt{7} = 7 $$
- Calculate ( 4\sqrt{3} \cdot 3\sqrt{3} )
Now, multiply: $$ 4\sqrt{3} \cdot 3\sqrt{3} = 12 \cdot 3 = 36 $$
- Calculate ( \sqrt{9} \cdot \sqrt{4} )
Then, simplify: $$ \sqrt{9} \cdot \sqrt{4} = 3 \cdot 2 = 6 $$
- Calculate ( \sqrt{gxy^2} \cdot \sqrt{3} \cdot \sqrt{3x^6} )
Combine the square roots: $$ \sqrt{g \cdot x^2 \cdot 3 \cdot 3x^6} = \sqrt{9x^8y^6g} = 3x^4y^3\sqrt{g} $$
- Calculate ( \left(\sqrt{5a}\right) \cdot \left(\sqrt{2}\right) \cdot \left(\sqrt{30a^2}\right) )
Now compute: $$ \sqrt{5a} \cdot \sqrt{2} \cdot \sqrt{30a^2} = \sqrt{5a \cdot 2 \cdot 30a^2} = \sqrt{300a^3} = 10\sqrt{3}a^{3/2} $$
- Calculate ( \sqrt{27} \cdot \sqrt{3} )
Lastly, simplify: $$ \sqrt{27} \cdot \sqrt{3} = \sqrt{81} = 9 $$
The answers corresponding to the radical calculations are:
- ( \frac{\sqrt{5}}{2} )
- ( 7 )
- ( 36 )
- ( 6 )
- ( 3x^4y^3\sqrt{g} )
- ( 10\sqrt{3}a^{3/2} )
- ( 9 )
More Information
Each radical operation corresponds to a number or expression that conveys a specific meaning in the message. The resulting values can be used to decipher the phrase hidden in the activity.
Tips
- Misapplying the property of square roots.
- Forgetting to properly simplify the results.
- Incorrectly combining terms during multiplication.
AI-generated content may contain errors. Please verify critical information