What is the reciprocal of 11?
Understand the Problem
The question is asking for the reciprocal of the number 11, which involves finding another number that, when multiplied with 11, results in 1. The reciprocal is defined as 1 divided by the number itself.
Answer
The reciprocal of 11 is $\frac{1}{11}$.
Answer for screen readers
The reciprocal of 11 is $\frac{1}{11}$.
Steps to Solve

Define the reciprocal The reciprocal of a number $x$ is defined as $\frac{1}{x}$. In this case, we need to find the reciprocal of 11.

Substitute the number into the reciprocal formula We will replace $x$ with 11 in our formula. This gives us:
$$ \text{Reciprocal of } 11 = \frac{1}{11} $$
 Simplify if needed Since $\frac{1}{11}$ is already in its simplest form, we conclude here.
The reciprocal of 11 is $\frac{1}{11}$.
More Information
The reciprocal is an important concept in mathematics, particularly in operations involving fractions and ratios. For any nonzero number, its reciprocal will always yield a product of 1 when multiplied by the original number.
Tips
 A common mistake is confusing the reciprocal with simply taking the inverse (i.e., writing it as $11^{1}$) without recognizing that this is equivalent to $\frac{1}{11}$.
 Not realizing that the reciprocal is only defined for nonzero numbers; zero does not have a reciprocal.