What is the exact value of cos(π/12)?

Understand the Problem

The question is asking for the exact value of the cosine of the angle π/12 radians. To solve this, we can use the half-angle or angle subtraction formulas for cosine since π/12 can be expressed in terms of known angles.

Answer

The exact value is $\frac{\sqrt{2} + \sqrt{6}}{4}$.
Answer for screen readers

The exact value of $\cos\left(\frac{\pi}{12}\right)$ is $\frac{\sqrt{2} + \sqrt{6}}{4}$.

Steps to Solve

  1. Identify angles to use in the cosine formula

We can express $\frac{\pi}{12}$ as a difference of angles. Notably, we’ll use $\frac{\pi}{3}$ (which is $60^\circ$) and $\frac{\pi}{4}$ (which is $45^\circ$):

$$ \frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4} $$

  1. Apply the cosine angle subtraction formula

The cosine angle subtraction formula states:

$$ \cos(a - b) = \cos a \cos b + \sin a \sin b $$

Substituting $a = \frac{\pi}{3}$ and $b = \frac{\pi}{4}$ into the formula gives:

$$ \cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{4}\right) $$

  1. Calculate the cosine and sine values

Now we need to find the cosine and sine of the angles:

  • $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$
  • $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$
  • $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
  • $\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
  1. Substitute the values back into the formula

Now, substituting the values we found in the previous step, we have:

$$ \cos\left(\frac{\pi}{12}\right) = \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) $$

  1. Simplify the expression

Now simplify each term:

$$ \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} $$

Combine the terms:

$$ \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4} $$

The exact value of $\cos\left(\frac{\pi}{12}\right)$ is $\frac{\sqrt{2} + \sqrt{6}}{4}$.

More Information

Using trigonometric identities like the cosine angle subtraction formula allows us to find exact values of trigonometric functions for non-standard angles. The value $\frac{\pi}{12}$ is useful in various applications in mathematics, especially in geometry and calculus.

Tips

  • Mistaking the angle subtraction formula by incorrectly placing the sine and cosine functions.
  • Forgetting to use the values of sine and cosine for angles like $\frac{\pi}{3}$ and $\frac{\pi}{4}$ correctly.
  • Not simplifying fractions properly.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser