The value of sin78° + sin6° - sin66° - sin42° is?
Understand the Problem
The question is asking to compute the value of the expression involving sine functions of various angles. We will analyze the terms and simplify it to find the correct answer among the provided options.
Answer
$-\frac{1}{2}$
Answer for screen readers
The value of the expression is $-\frac{1}{2}$.
Steps to Solve
- Rewrite the Expression
We begin with the expression
$$ \sin 78^\circ + \sin 6^\circ - \sin 66^\circ - \sin 42^\circ $$
- Use the Co-function Identities
Use the identity $\sin(90^\circ - x) = \cos(x)$.
- For $\sin 78^\circ$, we have:
$$ \sin 78^\circ = \cos 12^\circ $$
- For $\sin 66^\circ$, we see:
$$ \sin 66^\circ = \cos 24^\circ $$
- For $\sin 6^\circ$ and $\sin 42^\circ$, we can leave them as is for now.
- Substitute Values
Now substitute these values back into the expression:
$$ \cos 12^\circ + \sin 6^\circ - \cos 24^\circ - \sin 42^\circ $$
- Use Known Values for Sine and Cosine
Recall that:
$$ \sin 6^\circ = \sin(90^\circ - 84^\circ) = \cos 84^\circ $$
Thus the expression becomes:
$$ \cos 12^\circ + \cos 84^\circ - \cos 24^\circ - \sin 42^\circ $$
- Group Terms
Grouping similarities can help simplify:
$$ (\cos 12^\circ - \cos 24^\circ) + (\cos 84^\circ - \sin 42^\circ) $$
- Evaluate Values or Use Calculator
Using values for $\sin$ and $\cos$ functions, if needed:
- $\sin 6^\circ \approx 0.1045$
- $\sin 42^\circ \approx 0.6691$
- $\cos 12^\circ \approx 0.9781$
- $\cos 24^\circ \approx 0.9063$
- $\cos 84^\circ \approx 0.1045$
Now we substitute these:
$$ (0.9781 - 0.9063) + (0.1045 - 0.6691) $$
- Final Calculation
Doing the arithmetic:
- First part:
$$ 0.9781 - 0.9063 \approx 0.0718 $$
- Second part:
$$ 0.1045 - 0.6691 \approx -0.5646 $$
Combine both:
$$ 0.0718 - 0.5646 \approx -0.4928 $$
The resulting value is approximately:
$$ -0.5 = - \frac{1}{2} $$
The value of the expression is $-\frac{1}{2}$.
More Information
The expression simplifies through trigonometric identities and known values of sine and cosine functions. This particular computation illustrates the relationship between angles in trigonometry and their complements.
Tips
- Confusing sine and cosine values, especially with complementary angles.
- Not applying angle reduction identities properly, leading to incorrect simplifications.
AI-generated content may contain errors. Please verify critical information