The ratio of berries to oranges is 10:1. If there are 25 oranges, how many berries are there?
Understand the Problem
The question is asking for the number of berries based on a given ratio of berries to oranges, which is 10:1, and the quantity of oranges is provided as 25. We will find the number of berries by using the ratio to set up a proportion.
Answer
The number of berries is $250$.
Answer for screen readers
The number of berries is $250$.
Steps to Solve
- Identify the ratio of berries to oranges
The problem states that the ratio of berries to oranges is $10:1$. This means for every $10$ berries, there is $1$ orange.
- Write the proportion using the given quantity of oranges
We know the quantity of oranges is $25$. Using the ratio, we can set up a proportion: $$ \frac{\text{Berries}}{\text{Oranges}} = \frac{10}{1} $$
Substituting the number of oranges into the equation: $$ \frac{\text{Berries}}{25} = \frac{10}{1} $$
- Solve for the number of berries
To find the number of berries, cross-multiply: $$ \text{Berries} \cdot 1 = 10 \cdot 25 $$
This simplifies to: $$ \text{Berries} = 250 $$
The number of berries is $250$.
More Information
In this problem, we applied the concept of ratios and proportions to determine the number of berries based on the number of oranges provided. It's essential to understand how to set up proportions from ratios.
Tips
- A common mistake is forgetting to cross-multiply correctly. Ensure to multiply both sides of the equation properly.
- Another mistake could be misinterpreting the ratio; always double-check that the correct numbers are being used for each part of the ratio.