Si se sabe que el largo debe medir 8 m menos la altura x, ¿cuál es el valor de x para que la longitud de la rampa sea mínima?
![Question image](https://assets.quizgecko.com/question_images/gltMiJ5v645ArBBiBVKAA3VshK90z4Kk0qplYaEO.jpg)
Understand the Problem
El problema plantea una rampa donde la longitud de la base es 8 metros menos la altura (x). Se pide encontrar el valor de x (la altura) que hará que la longitud de la rampa sea mínima. Esto implica usar el teorema de Pitágoras para expresar la longitud de la rampa en función de x, y luego encontrar el valor de x que minimiza esta expresión.
Answer
$x = 4$
Answer for screen readers
$x = 4$
Steps to Solve
- Define the length of the ramp using the Pythagorean theorem
Let $L$ be the length of the ramp. According to the Pythagorean theorem, we have:
$$L^2 = x^2 + (8-x)^2$$
- Express $L^2$ as a function of $x$
Expanding the equation:
$$L^2 = x^2 + (64 - 16x + x^2)$$
$$L^2 = 2x^2 - 16x + 64$$ Let $f(x) = 2x^2 - 16x + 64$. We want to minimize this function.
- Find the critical points
To find the minimum length of the ramp, we need to find the critical points of the function $f(x)$. We can do this by taking the derivative of $f(x)$ with respect to $x$ and setting it equal to 0:
$$f'(x) = 4x - 16$$
Setting $f'(x) = 0$:
$$4x - 16 = 0$$
$$4x = 16$$
$$x = 4$$
- Verify that it's a minimum
To ensure that $x = 4$ corresponds to a minimum, we can perform the second derivative test. Taking the second derivative of $f(x)$:
$$f''(x) = 4$$
Since $f''(x) = 4 > 0$, the function $f(x)$ has a minimum at $x = 4$.
$x = 4$
More Information
The height $x$ that minimizes the length of the ramp is 4 meters.
Tips
A common mistake is to only find the first derivative and set it to zero, but forget to check if it's a minimum or a maximum using the second derivative test (or by analyzing the sign of the first derivative around the critical point). Failing to expand the $(8-x)^2$ term correctly when applying the Pythagorean theorem is another possible mistake.
AI-generated content may contain errors. Please verify critical information