Let a bivariate random variable (X, Y) have the following probability density function f(x,y) = e^-y; 0 < x < y < ∞ and y > 0. Obtain the following: a) Joint moment generating func... Let a bivariate random variable (X, Y) have the following probability density function f(x,y) = e^-y; 0 < x < y < ∞ and y > 0. Obtain the following: a) Joint moment generating function of (X, Y) b) Examine whether random variables X and Y are independent.

Question image

Understand the Problem

The question is asking for two specific tasks related to a bivariate random variable with a given probability density function. The first task is to find the joint moment generating function of the random variables X and Y. The second task is to examine whether X and Y are independent.

Answer

a) $M_{X,Y}(s,t) = \frac{1}{(1-s)(1-t)}$; b) Not independent.
Answer for screen readers

a) The joint moment generating function is

$$ M_{X,Y}(s,t) = \frac{1}{(1-s)(1-t)} $$

b) The random variables $X$ and $Y$ are not independent.

Steps to Solve

  1. Define the Joint Moment Generating Function (MGF)

The joint moment generating function $M_{X,Y}(s,t)$ for the random variables $X$ and $Y$ is defined as

$$ M_{X,Y}(s,t) = E[e^{sX + tY}] = \int_{0}^{\infty} \int_{x}^{\infty} e^{sx + ty} f(x,y) , dy , dx $$

  1. Substitute the Probability Density Function (PDF)

Using the given PDF $f(x,y) = e^{-y}$ for $0 < x < y < \infty$:

$$ M_{X,Y}(s,t) = \int_{0}^{\infty} \int_{x}^{\infty} e^{sx + ty} e^{-y} , dy , dx $$

  1. Evaluate the Inner Integral

First, compute the inner integral with respect to $y$:

$$ \int_{x}^{\infty} e^{ty} e^{-y} , dy = \int_{x}^{\infty} e^{(t-1)y} , dy $$

This integral converges if $t < 1$:

$$ = \left[ \frac{e^{(t-1)y}}{t-1} \right]_{x}^{\infty} = \frac{e^{(t-1)x}}{1-t} $$

  1. Substitute and Evaluate the Outer Integral

Now substitute back the result into the outer integral:

$$ M_{X,Y}(s,t) = \int_{0}^{\infty} e^{sx} \frac{e^{(t-1)x}}{1-t} , dx = \frac{1}{1-t} \int_{0}^{\infty} e^{(s+t-1)x} , dx $$

This integral converges if $s + t < 1$:

$$ = \frac{1}{(1-t)(1-s-t)} $$

Thus, the joint moment generating function is:

$$ M_{X,Y}(s,t) = \frac{1}{(1-s)(1-t)} $$

  1. Check Independence of X and Y

To determine if $X$ and $Y$ are independent, we check if the joint PDF can be factored as the product of the marginal PDFs:

$$ f(x,y) = f_X(x) \cdot f_Y(y) $$

First, find the marginal PDF of $X$:

$$ f_X(x) = \int_{x}^{\infty} f(x,y) , dy = \int_{x}^{\infty} e^{-y} , dy = e^{-x} $$

Then, find the marginal PDF of $Y$:

$$ f_Y(y) = \int_{0}^{y} f(x,y) , dx = y e^{-y} $$

Check if $f(x,y) \neq f_X(x) f_Y(y)$:

$$ e^{-y} \neq e^{-x} \cdot (y e^{-y}) $$

Since they do not satisfy the independence condition, $X$ and $Y$ are not independent.

a) The joint moment generating function is

$$ M_{X,Y}(s,t) = \frac{1}{(1-s)(1-t)} $$

b) The random variables $X$ and $Y$ are not independent.

More Information

The moment generating function helps in finding moments of random variables. Joint moment generating functions can reveal relationships between multiple random variables, including independence.

Tips

  • Assuming independence without verifying the relationship between joint and marginal PDFs.
  • Confusing limits of integration; ensure to follow the provided bounds of the random variables.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser