If x satisfies the equation 4^x = 256, then x is equal to __.

Question image

Understand the Problem

The question is asking to solve for 'x' in the equation 4^x = 256, which can be approached by expressing 256 as a power of 4.

Answer

The value of \( x \) is \( 4 \).
Answer for screen readers

The value of ( x ) is ( 4 ).

Steps to Solve

  1. Express 256 as a Power of 4

First, we need to rewrite 256 in terms of the base 4. We know that: $$ 256 = 4^4 $$

  1. Set the Exponents Equal

Now that we have both sides of the equation in terms of base 4, we can set the exponents equal: $$ x = 4 $$

  1. Evaluate the Result

Thus, we find that: $$ x = 4 $$

The value of ( x ) is ( 4 ).

More Information

Since ( 4^4 = 256 ), we confirmed that our solution is correct by converting back to check if both sides of the equation equal.

Tips

  • Miscalculating the power of 4 or 256 can lead to incorrect results. It's essential to accurately express numbers in their exponential forms before solving.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser