If sin(θ) = 4/5 and sin(φ) = 12/13, evaluate tan(θ - φ).
Understand the Problem
The question is asking to evaluate the tangent of the difference of two angles, given specific trigonometric values for sine. The user must show their work and provide exact values for the calculation.
Answer
The value of \( \tan(\theta - \phi) \) is \( \frac{33}{56} \).
Answer for screen readers
The final answer is ( \tan(\theta - \phi) = \frac{33}{56} ).
Steps to Solve
- Identify the given values for sine and cosine
From the problem, we have:
- ( \sin \theta = \frac{4}{5} )
- ( \sin \phi = \frac{5}{13} )
- Calculate corresponding cosine values using the Pythagorean identity
Using the identity ( \sin^2 + \cos^2 = 1 ):
For ( \theta ): $$ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} $$
For ( \phi ): $$ \cos \phi = \sqrt{1 - \sin^2 \phi} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} $$
- Use the tangent difference formula
The tangent difference formula is given by: $$ \tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi} $$
First, we must find ( \tan \theta ) and ( \tan \phi ):
- ( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} )
- ( \tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} )
- Substitute ( \tan \theta ) and ( \tan \phi ) into the formula
Using the values we calculated: $$ \tan(\theta - \phi) = \frac{\frac{4}{3} - \frac{5}{12}}{1 + \left(\frac{4}{3}\right) \left(\frac{5}{12}\right)} $$
- Simplify the numerator and denominator
Calculating the numerator: $$ \frac{4}{3} - \frac{5}{12} = \frac{16}{12} - \frac{5}{12} = \frac{11}{12} $$
Calculating the denominator: $$ 1 + \left(\frac{4}{3} \cdot \frac{5}{12}\right) = 1 + \frac{20}{36} = 1 + \frac{5}{9} = \frac{9}{9} + \frac{5}{9} = \frac{14}{9} $$
- Final calculation of ( \tan(\theta - \phi) )
Now substituting back: $$ \tan(\theta - \phi) = \frac{\frac{11}{12}}{\frac{14}{9}} = \frac{11}{12} \cdot \frac{9}{14} = \frac{99}{168} = \frac{33}{56} $$
The final answer is ( \tan(\theta - \phi) = \frac{33}{56} ).
More Information
This result uses the tangent difference formula, along with the sine and cosine identities, to find the exact value of the tangent of the angle difference. This method is widely applicable in solving trigonometric problems.
Tips
- Forgetting to use the square root when finding cosine values.
- Mixing up sine and cosine in tangent calculations.
- Not simplifying fractions correctly.
AI-generated content may contain errors. Please verify critical information