If sin(θ) = 4/5 and sin(φ) = 12/13, evaluate tan(θ - φ).

Question image

Understand the Problem

The question is asking to evaluate the tangent of the difference of two angles, given specific trigonometric values for sine. The user must show their work and provide exact values for the calculation.

Answer

The value of \( \tan(\theta - \phi) \) is \( \frac{33}{56} \).
Answer for screen readers

The final answer is ( \tan(\theta - \phi) = \frac{33}{56} ).

Steps to Solve

  1. Identify the given values for sine and cosine

From the problem, we have:

  • ( \sin \theta = \frac{4}{5} )
  • ( \sin \phi = \frac{5}{13} )
  1. Calculate corresponding cosine values using the Pythagorean identity

Using the identity ( \sin^2 + \cos^2 = 1 ):

For ( \theta ): $$ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} $$

For ( \phi ): $$ \cos \phi = \sqrt{1 - \sin^2 \phi} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} $$

  1. Use the tangent difference formula

The tangent difference formula is given by: $$ \tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi} $$

First, we must find ( \tan \theta ) and ( \tan \phi ):

  • ( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} )
  • ( \tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} )
  1. Substitute ( \tan \theta ) and ( \tan \phi ) into the formula

Using the values we calculated: $$ \tan(\theta - \phi) = \frac{\frac{4}{3} - \frac{5}{12}}{1 + \left(\frac{4}{3}\right) \left(\frac{5}{12}\right)} $$

  1. Simplify the numerator and denominator

Calculating the numerator: $$ \frac{4}{3} - \frac{5}{12} = \frac{16}{12} - \frac{5}{12} = \frac{11}{12} $$

Calculating the denominator: $$ 1 + \left(\frac{4}{3} \cdot \frac{5}{12}\right) = 1 + \frac{20}{36} = 1 + \frac{5}{9} = \frac{9}{9} + \frac{5}{9} = \frac{14}{9} $$

  1. Final calculation of ( \tan(\theta - \phi) )

Now substituting back: $$ \tan(\theta - \phi) = \frac{\frac{11}{12}}{\frac{14}{9}} = \frac{11}{12} \cdot \frac{9}{14} = \frac{99}{168} = \frac{33}{56} $$

The final answer is ( \tan(\theta - \phi) = \frac{33}{56} ).

More Information

This result uses the tangent difference formula, along with the sine and cosine identities, to find the exact value of the tangent of the angle difference. This method is widely applicable in solving trigonometric problems.

Tips

  • Forgetting to use the square root when finding cosine values.
  • Mixing up sine and cosine in tangent calculations.
  • Not simplifying fractions correctly.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser