If [k + 4 -1] [3 k - 6] = [a -1] [3 -4], then find the value of a. If determinant [k 8 4] = 4, then value of k will be -3, 3, -5, 5. If y = secx - 1 / secx + 1 then find the... If [k + 4 -1] [3 k - 6] = [a -1] [3 -4], then find the value of a. If determinant [k 8 4] = 4, then value of k will be -3, 3, -5, 5. If y = secx - 1 / secx + 1 then find the value of dy/dx. If r = 4.9 cm, the rate of increase of circumference is 1.47, 6π, 6.1π, none of these. Value of ∫(1/√(1-x^2))dx will be 2, -1, -2, 1. The degree of the differential equation dy/dx + y = e^x will be 1, 2, 0, 3. Find the angle between two vectors a and b.
Understand the Problem
प्रश्न विभिन्न गणितीय मुद्दों को संबोधित कर रहा है। इसमें वैकल्पिक समीकरण, वृत्त की त्रिज्या की वृद्धि के आधार पर परिधि की वृद्धि, और रेखाओं के बीच का कोण जैसे विषय शामिल हैं।
Answer
The rate of increase of circumference is \( 1.4\pi \) cm/s.
Answer for screen readers
The rate of increase of circumference is ( 1.4\pi ) cm/s.
Steps to Solve
- Finding the rate of increase of circumference
The circumference ( C ) of a circle is given by the formula:
$$ C = 2\pi r $$
To find the rate of increase of the circumference with respect to time, we differentiate both sides with respect to ( t ):
$$ \frac{dC}{dt} = 2\pi \frac{dr}{dt} $$
- Substituting the values
Given that ( \frac{dr}{dt} = 0.7 ) cm/s and ( r = 4.9 ) cm, we substitute these values into the derivative:
$$ \frac{dC}{dt} = 2\pi (0.7) $$
- Calculating the final answer
Now calculate:
$$ \frac{dC}{dt} = 2 \times 0.7 \times \pi = 1.4\pi $$
The numerical value will provide the required increase in circumference per second.
- Comparing with the options
The options are:
- (a) ( 1.47 )
- (b) ( 6\pi )
- (c) ( 6.1\pi )
- (d) None of these
We know that ( 1.4\pi \approx 4.4 ) which does not match any provided options, suggesting to round to the given values or clarify the context.
The rate of increase of circumference is ( 1.4\pi ) cm/s.
More Information
The rate of increase of the circumference of a circle is directly proportional to the rate of increase of its radius. This relationship holds for any circle, where ( \pi ) is a constant.
Tips
- Ignoring the differentiation step when moving from radius to circumference.
- Not substituting the rate of change of radius correctly.
AI-generated content may contain errors. Please verify critical information