Find y(0.1) using Euler Method, dy/dx = y - x, y(0) = 2, h = 0.02.

Question image

Understand the Problem

The question is asking to find the value of y at x = 0.1 using Euler's Method. The given differential equation is dy/dx = y - x, with initial conditions y(0) = 2 and a step size (h) of 0.02. We will apply the Euler Method iteratively to approximate the value of y at the specified point.

Answer

$y(0.1) \approx 2.38575$
Answer for screen readers

The value of $y(0.1)$ using Euler's Method is approximately $y(0.1) \approx 2.38575$.

Steps to Solve

  1. Determine the number of steps
    We want to find $y(0.1)$ using a step size of $h = 0.02$.
    To find the total number of steps, calculate:
    $$ n = \frac{0.1 - 0}{0.02} = 5 $$
    So, we will perform 5 iterations of Euler's method.

  2. Initialize variables
    Set the initial values:

  • $x_0 = 0$,
  • $y_0 = 2$.
  1. Euler's Method Iteration
    For each step, use the formula:
    $$ y_{n+1} = y_n + h \cdot f(x_n, y_n) $$
    where $f(x, y) = y - x$.
    Now compute each iteration:
  • Iteration 1:

    • Calculate $f(x_0, y_0) = y_0 - x_0 = 2 - 0 = 2$.
    • Update $y_1$:
      $$ y_1 = y_0 + h \cdot f(x_0, y_0) = 2 + 0.02 \cdot 2 = 2.04 $$
    • Update $x_1$:
      $$ x_1 = x_0 + h = 0 + 0.02 = 0.02 $$
  • Iteration 2:

    • Calculate $f(x_1, y_1) = y_1 - x_1 = 2.04 - 0.02 = 2.02$.
    • Update $y_2$:
      $$ y_2 = y_1 + h \cdot f(x_1, y_1) = 2.04 + 0.02 \cdot 2.02 = 2.0804 $$
    • Update $x_2$:
      $$ x_2 = x_1 + h = 0.02 + 0.02 = 0.04 $$
  • Iteration 3:

    • Calculate $f(x_2, y_2) = y_2 - x_2 = 2.0804 - 0.04 = 2.0404$.
    • Update $y_3$:
      $$ y_3 = y_2 + h \cdot f(x_2, y_2) = 2.0804 + 0.02 \cdot 2.0404 = 2.120808 $$
    • Update $x_3$:
      $$ x_3 = x_2 + h = 0.04 + 0.02 = 0.06 $$
  • Iteration 4:

    • Calculate $f(x_3, y_3) = y_3 - x_3 = 2.120808 - 0.06 = 2.060808$.
    • Update $y_4$:
      $$ y_4 = y_3 + h \cdot f(x_3, y_3) = 2.120808 + 0.02 \cdot 2.060808 = 2.24163216 $$
    • Update $x_4$:
      $$ x_4 = x_3 + h = 0.06 + 0.02 = 0.08 $$
  • Iteration 5:

    • Calculate $f(x_4, y_4) = y_4 - x_4 = 2.24163216 - 0.08 = 2.16163216$.
    • Update $y_5$:
      $$ y_5 = y_4 + h \cdot f(x_4, y_4) = 2.24163216 + 0.02 \cdot 2.16163216 = 2.3857518272 $$
    • Update $x_5$:
      $$ x_5 = x_4 + h = 0.08 + 0.02 = 0.1 $$
  1. Final value
    The approximated value at $y(0.1) = y_5$.

The value of $y(0.1)$ using Euler's Method is approximately $y(0.1) \approx 2.38575$.

More Information

Euler's Method is a numerical technique used to approximate solutions of ordinary differential equations. It progresses by taking small steps along the function's tangent. The accuracy of the method improves with smaller step sizes.

Tips

  • Incorrectly calculating the function: Ensure that $f(x, y) = y - x$ is correctly applied in each iteration.
  • Mismanaging the step index: Ensure the correct values of $x_n$ and $y_n$ are used for each step.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser