Evaluate the integral ∫ dx / (x^2 √(x^2 + 9))

Question image

Understand the Problem

The question is asking for the evaluation of the integral, which involves a rational function where the variable x is in both the numerator and the denominator. This requires the application of integration techniques.

Answer

$$ \frac{1}{6} \tan^{-1}\left(\frac{x}{3}\right) + C $$
Answer for screen readers

The final answer is:

$$ \frac{1}{6} \tan^{-1}\left(\frac{x}{3}\right) + C $$

Steps to Solve

  1. Identify a Suitable Substitution

We will use the substitution ( x = 3 \tan(\theta) ). Therefore, ( dx = 3 \sec^2(\theta) d\theta ). This gives us ( \sqrt{x^2 + 9} = \sqrt{(3 \tan(\theta))^2 + 9} = 3 \sec(\theta) ).

  1. Substitute into the Integral

Plugging in the substitution into the integral:

$$ \int \frac{dx}{x^2 \sqrt{x^2 + 9}} = \int \frac{3 \sec^2(\theta) d\theta}{(3 \tan(\theta))^2 \cdot 3 \sec(\theta)} $$

This simplifies to:

$$ \int \frac{3 \sec^2(\theta) d\theta}{9 \tan^2(\theta) \cdot 3 \sec(\theta)} = \int \frac{d\theta}{3 \tan^2(\theta)} $$

  1. Rewrite in Terms of Trigonometric Functions

Using the identity ( \tan^2(\theta) = \sec^2(\theta) - 1 ):

$$ \int \frac{d\theta}{3 (\sec^2(\theta) - 1)} = \frac{1}{3} \int \frac{d\theta}{\sec^2(\theta) - 1} $$

This can further be expressed as:

$$ \int \cos^2(\theta) d\theta $$

  1. Integrate Using Trigonometric Identity

Now, using the identity:

$$ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} $$

Thus, we integrate:

$$ \frac{1}{3} \int \left(\frac{1 + \cos(2\theta)}{2}\right) d\theta = \frac{1}{6} \theta + \frac{1}{6} \sin(2\theta) + C $$

  1. Back Substitute to Original Variable

Recall that ( \theta = \tan^{-1}\left(\frac{x}{3}\right) ). Hence, substituting back we get:

$$ \frac{1}{6} \tan^{-1}\left(\frac{x}{3}\right) + C $$

The final answer is:

$$ \frac{1}{6} \tan^{-1}\left(\frac{x}{3}\right) + C $$

More Information

The integral represents an application of trigonometric substitution, which is useful for integrals involving square roots of sums of squares. This technique transforms the integral into a more manageable form, ultimately allowing for an explicit solution.

Tips

  • Confusing the trigonometric identities. It’s essential to correctly identify ( \sec^2(\theta) ) and use the relationship with ( \tan^2(\theta) ) correctly.
  • Forgetting to convert back to the original variable at the end of the integration process.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser