Based on the figure, select all true equations.
Understand the Problem
The question requires the application of trigonometric ratios in a right triangle to determine which of the provided statements about the angles and sides of the triangle are true.
Answer
A: $ \cos(42^\circ) = \frac{b}{c} $; D: $ \sin(48^\circ) = \frac{b}{c} $; F: $ \tan(48^\circ) = \frac{a}{b} $
Answer for screen readers
The true equations are:
A: $ \cos(42^\circ) = \frac{b}{c} $
D: $ \sin(48^\circ) = \frac{b}{c} $
F: $ \tan(48^\circ) = \frac{a}{b} $
Steps to Solve
-
Identify Triangle Properties
In triangle ABC, the given angles are $42^\circ$ and $48^\circ$. The third angle can be found using the property that the sum of angles in a triangle is $180^\circ$:
$$ A + B + C = 180^\circ $$ Thus,
$$ C = 180^\circ - 42^\circ - 48^\circ = 90^\circ $$ -
Establish Trigonometric Ratios
For angle $A = 42^\circ$ and angle $B = 48^\circ$, we can define the trigonometric ratios:
-
For angle $A$:
$$ \cos(42^\circ) = \frac{b}{c} $$ $$ \sin(42^\circ) = \frac{a}{c} $$ $$ \tan(42^\circ) = \frac{a}{b} $$ -
For angle $B$:
$$ \cos(48^\circ) = \frac{a}{c} $$ $$ \sin(48^\circ) = \frac{b}{c} $$ $$ \tan(48^\circ) = \frac{b}{a} $$
-
Evaluate the Given Options
Now let's check the statements one by one:
- A: $ \cos(42^\circ) = \frac{b}{c} $ (True)
- B: $ \cos(48^\circ) = \frac{b}{c} $ (False, should be $ \cos(48^\circ) = \frac{a}{c} $)
- C: $ \sin(42^\circ) = \frac{b}{c} $ (False, should be $ \sin(42^\circ) = \frac{a}{c} $)
- D: $ \sin(48^\circ) = \frac{b}{c} $ (True)
- E: $ \tan(42^\circ) = \frac{b}{a} $ (False, should be $ \tan(42^\circ) = \frac{a}{b} $)
- F: $ \tan(48^\circ) = \frac{a}{b} $ (True)
-
List the True Statements
From the evaluations, the true equations are:
- A: $ \cos(42^\circ) = \frac{b}{c} $
- D: $ \sin(48^\circ) = \frac{b}{c} $
- F: $ \tan(48^\circ) = \frac{a}{b} $
The true equations are:
A: $ \cos(42^\circ) = \frac{b}{c} $
D: $ \sin(48^\circ) = \frac{b}{c} $
F: $ \tan(48^\circ) = \frac{a}{b} $
More Information
In a right triangle, the relationships between the angles and sides are defined by trigonometric functions. These functions relate the angles to the ratios of the lengths of the sides of the triangle.
Tips
- Confusing the definitions of $\sin$, $\cos$, and $\tan$. Remember that:
- $\sin$ relates the opposite side to the hypotenuse.
- $\cos$ relates the adjacent side to the hypotenuse.
- $\tan$ relates the opposite side to the adjacent side.
AI-generated content may contain errors. Please verify critical information