પ્રશ્નમાં ગણિતના પ્રશ્નોની એક શ્રેણી આપે છે, જેમ કે 7C7 = ........., 2x - 3 = 4-2x, તથા અન્ય કારણો. પ્રશ્નમાં ગણિતના પ્રશ્નોની એક શ્રેણી આપે છે, જેમ કે 7C7 = ........., 2x - 3 = 4-2x, તથા અન્ય કારણો.

Question image

Understand the Problem

પ્રશ્ન એ ગણિતથી સંબંધિત છે, જેમાં વિવિધ ગણિતીય પ્રશ્નોનું ઉકેલવાનું કહેવામાં આવ્યું છે, જેમકે સંગ્રહણા, ગણતરીઓ તેમજ સમીકરણોનું ઉકેલવું.

Answer

1) $1$ 2) $2$ 3) $x = \frac{7}{4}$
Answer for screen readers
  1. $7C7 = 1$
  2. $x = 2$
  3. $x = \frac{7}{4}$

Steps to Solve

  1. Solve for $7C7$
    The binomial coefficient is calculated as:
    $$ nCk = \frac{n!}{k!(n-k)!} $$
    For $7C7$, it becomes:
    $$ 7C7 = \frac{7!}{7! \cdot (7-7)!} = \frac{7!}{7! \cdot 0!} = \frac{1}{1} = 1 $$

  2. Solve for $x + 2 = 4$
    To find $x$, subtract $2$ from both sides:
    $$ x = 4 - 2 $$
    Thus:
    $$ x = 2 $$

  3. Solve for $2x - 3 = 4 - 2x$
    First, add $2x$ to both sides:
    $$ 2x - 3 + 2x = 4 $$
    This simplifies to:
    $$ 4x - 3 = 4 $$
    Next, add $3$ to both sides:
    $$ 4x = 4 + 3 $$
    So we have:
    $$ 4x = 7 $$
    Now divide both sides by $4$:
    $$ x = \frac{7}{4} $$

  1. $7C7 = 1$
  2. $x = 2$
  3. $x = \frac{7}{4}$

More Information

  • The value of $7C7$ equals 1 because there's only one way to choose all 7 items.
  • The equation $x + 2 = 4$ is simple linear algebra, where isolating $x$ leads to the solution.
  • The equation $2x - 3 = 4 - 2x$ demonstrates the equality of two expressions leading to solving for an unknown.

Tips

  • Miscalculating the binomial coefficient, particularly forgetting that $0! = 1$.
  • Neglecting to perform the same operation on both sides of the equation in linear equations.
  • Not simplifying properly when combining like terms.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser