√(7/9 - 1 1/2) ifadəsini hesablayın.
Understand the Problem
Sualları hesablamağı tələb edir, spesifik olaraq verilmiş ifadənin kökünü tapmağı. Bu problem radikal ifadənin hesablanması ilə əlaqədardır.
Answer
The expression evaluates to $$ i \frac{\sqrt{13}}{3\sqrt{2}} $$
Answer for screen readers
The answer is
$$ i \frac{\sqrt{13}}{3\sqrt{2}} $$
Steps to Solve
-
Convert Mixed Number to Improper Fraction
First, convert the mixed number $1 \frac{1}{2}$ to an improper fraction.
$$ 1 \frac{1}{2} = \frac{3}{2} $$
-
Substitute and Simplify Inside the Radical
Substitute $\frac{3}{2}$ back into the expression. Now, simplify the expression inside the square root:
$$ \frac{7}{9} - \frac{3}{2} $$
To perform this subtraction, find a common denominator. The least common multiple of 9 and 2 is 18.
Converting each fraction:
$$ \frac{7}{9} = \frac{14}{18} $$ \ $$ \frac{3}{2} = \frac{27}{18} $$
Now, perform the subtraction:
$$ \frac{14}{18} - \frac{27}{18} = \frac{14 - 27}{18} = \frac{-13}{18} $$
-
Take the Square Root
Now, we take the square root of the result:
$$ \sqrt{\frac{-13}{18}} $$
Since the number under the square root is negative, we can express it as:
$$ \sqrt{-1} \cdot \sqrt{\frac{13}{18}} = i \sqrt{\frac{13}{18}} $$
-
Simplify the Square Root Further
Here, we can simplify the square root:
$$ \sqrt{\frac{13}{18}} = \frac{\sqrt{13}}{\sqrt{18}} = \frac{\sqrt{13}}{3\sqrt{2}} $$
Thus, the final result is:
$$ i \frac{\sqrt{13}}{3\sqrt{2}} $$
The answer is
$$ i \frac{\sqrt{13}}{3\sqrt{2}} $$
More Information
The result involves an imaginary number because the expression under the square root is negative. This highlights how square roots of negative numbers lead to complex numbers.
Tips
- Forgetting to convert mixed numbers to improper fractions correctly.
- Not finding a common denominator when subtracting fractions.
- Misinterpreting the square root of a negative number.
AI-generated content may contain errors. Please verify critical information