√(7/9 - 1 1/2) ifadəsini hesablayın.

Question image

Understand the Problem

Sualları hesablamağı tələb edir, spesifik olaraq verilmiş ifadənin kökünü tapmağı. Bu problem radikal ifadənin hesablanması ilə əlaqədardır.

Answer

The expression evaluates to $$ i \frac{\sqrt{13}}{3\sqrt{2}} $$
Answer for screen readers

The answer is

$$ i \frac{\sqrt{13}}{3\sqrt{2}} $$

Steps to Solve

  1. Convert Mixed Number to Improper Fraction

    First, convert the mixed number $1 \frac{1}{2}$ to an improper fraction.

    $$ 1 \frac{1}{2} = \frac{3}{2} $$

  2. Substitute and Simplify Inside the Radical

    Substitute $\frac{3}{2}$ back into the expression. Now, simplify the expression inside the square root:

    $$ \frac{7}{9} - \frac{3}{2} $$

    To perform this subtraction, find a common denominator. The least common multiple of 9 and 2 is 18.

    Converting each fraction:

    $$ \frac{7}{9} = \frac{14}{18} $$ \ $$ \frac{3}{2} = \frac{27}{18} $$

    Now, perform the subtraction:

    $$ \frac{14}{18} - \frac{27}{18} = \frac{14 - 27}{18} = \frac{-13}{18} $$

  3. Take the Square Root

    Now, we take the square root of the result:

    $$ \sqrt{\frac{-13}{18}} $$

    Since the number under the square root is negative, we can express it as:

    $$ \sqrt{-1} \cdot \sqrt{\frac{13}{18}} = i \sqrt{\frac{13}{18}} $$

  4. Simplify the Square Root Further

    Here, we can simplify the square root:

    $$ \sqrt{\frac{13}{18}} = \frac{\sqrt{13}}{\sqrt{18}} = \frac{\sqrt{13}}{3\sqrt{2}} $$

    Thus, the final result is:

    $$ i \frac{\sqrt{13}}{3\sqrt{2}} $$

The answer is

$$ i \frac{\sqrt{13}}{3\sqrt{2}} $$

More Information

The result involves an imaginary number because the expression under the square root is negative. This highlights how square roots of negative numbers lead to complex numbers.

Tips

  • Forgetting to convert mixed numbers to improper fractions correctly.
  • Not finding a common denominator when subtracting fractions.
  • Misinterpreting the square root of a negative number.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser