5. Write in simplest radical form. a) 1/3 √63 + 2/5 √700 - 2/3 √112 + 3/2 √28 b) (7/2) (3√1024) + (5/12)(3√2000) - 3(3√686) + (1/8)(3√128) 6. Determine the perimeter of the followi... 5. Write in simplest radical form. a) 1/3 √63 + 2/5 √700 - 2/3 √112 + 3/2 √28 b) (7/2) (3√1024) + (5/12)(3√2000) - 3(3√686) + (1/8)(3√128) 6. Determine the perimeter of the following figures in simplest radical form. a) √5 + √45 + √20 + √45 + √125 b) 2√80 + √24 - 2√96 + 5√125
Understand the Problem
The question requires us to simplify expressions involving radicals and then determine the perimeters of geometric figures, also expressed in simplest radical form. The first part involves combining and simplifying several radical expressions, while the second part asks for the perimeter calculations based on the given shapes.
Answer
Answer for screen readers
For part (a): $$ \frac{16}{3} \sqrt{7} $$
For part (b): $$ 10.43 + \frac{25 \sqrt[3]{20}}{12} $$
For perimeter part (6a): $$ P = 2\sqrt{45
Steps to Solve
-
Simplifying Radical Expressions in Part (a)
Begin with the expression: $$ \frac{1}{3} \sqrt{63} + \frac{2}{5} \sqrt{700} - \frac{2}{3} \sqrt{112} + \frac{3}{2} \sqrt{28} $$
Simplify each term:
- $\sqrt{63} = \sqrt{9 \cdot 7} = 3\sqrt{7} \implies \frac{1}{3} \cdot 3\sqrt{7} = \sqrt{7}$
- $\sqrt{700} = \sqrt{100 \cdot 7} = 10\sqrt{7} \implies \frac{2}{5} \cdot 10\sqrt{7} = 4\sqrt{7}$
- $\sqrt{112} = \sqrt{16 \cdot 7} = 4\sqrt{7} \implies -\frac{2}{3} \cdot 4\sqrt{7} = -\frac{8}{3} \sqrt{7}$
- $\sqrt{28} = \sqrt{4 \cdot 7} = 2\sqrt{7} \implies \frac{3}{2} \cdot 2\sqrt{7} = 3\sqrt{7}$
Now combine the simplified terms: $$ \sqrt{7} + 4\sqrt{7} - \frac{8}{3} \sqrt{7} + 3\sqrt{7} $$
Convert to a common denominator (3): $$ \left( \frac{3}{3} + \frac{12}{3} + \frac{9}{3} - \frac{8}{3} \right) \sqrt{7} = \frac{16}{3} \sqrt{7} $$
-
Simplifying Radical Expressions in Part (b)
Begin with the expression: $$ \frac{7 \sqrt[3]{1024}}{2} + \frac{5 \sqrt[3]{2000}}{12} - 3 \sqrt[3]{686} + \frac{1}{8} \sqrt[3]{128} $$
Simplify each term:
- $\sqrt[3]{1024} = 10 \implies \frac{7 \cdot 10}{2} = 35$
- $\sqrt[3]{2000} = 10 \sqrt[3]{20} \implies \frac{5 \cdot 10 \sqrt[3]{20}}{12} = \frac{25 \sqrt[3]{20}}{12}$
- $\sqrt[3]{686} = 8.4 \implies -3 \cdot 8.4 = -25.2$
- $\sqrt[3]{128} = 5.04 \implies \frac{1}{8} \cdot 5.04 = 0.63$
Combine the terms: $$ 35 + \frac{25 \sqrt[3]{20}}{12} - 25.2 + 0.63 $$
Finally, combine the constants and retain the radical: $$ 35 - 25.2 + 0.63 = 10.43 + \frac{25 \sqrt[3]{20}}{12} $$
-
Determining Perimeter in Part (6a)
The perimeter of a figure is calculated by adding up all the sides. The figure has four sides given by:
- One side = $\sqrt{45} + \sqrt{45}$ (two sides)
- Opposite side = $\sqrt{20} + \sqrt{125}$ (two sides)
Thus the perimeter $P$ is: $$ P = 2(\sqrt{45}) + 2(\sqrt{20} + \sqrt{125}) $$
-
Determining Perimeter in Part (6b)
The perimeter is similar, with lengths given by: $$ P = 2\sqrt{80} + \sqrt{24} - 2\sqrt{96} - \sqrt{125} $$
Combine like terms accordingly.
For part (a): $$ \frac{16}{3} \sqrt{7} $$
For part (b): $$ 10.43 + \frac{25 \sqrt[3]{20}}{12} $$
For perimeter part (6a): $$ P = 2\sqrt{45
AI-generated content may contain errors. Please verify critical information