Podcast
Questions and Answers
Quid significat 'df.plot()' in contextu Pythonis?
Quid significat 'df.plot()' in contextu Pythonis?
- Generare dataset random
- Vulgare consilium graphici ex DataFrame (correct)
- Exhibere descriptivam statisticam
- Creare novam DataFrame
Quod tipo graphici non est in praebitis Pandas?
Quod tipo graphici non est in praebitis Pandas?
- Area
- Box
- Hist
- Stacked Bar (correct)
Quomodo possumus mutare columnas in DataFrame Pandas?
Quomodo possumus mutare columnas in DataFrame Pandas?
- Per 'df.columns = new_columns' (correct)
- Per 'df.add_columns(new_columns)'
- Per 'df.update_columns(new_columns)'
- Per 'df.rename(columns=new_names)' (correct)
Quod modulum visualisationis non est penitus in lista data visualization?
Quod modulum visualisationis non est penitus in lista data visualization?
Quae res fornere non potest in grafico 1D ex Pandas?
Quae res fornere non potest in grafico 1D ex Pandas?
Quae coloris ad chartam pertusam adhibentur in codice?
Quae coloris ad chartam pertusam adhibentur in codice?
Quid significat 'autopct' in functione 'plt.pie()'?
Quid significat 'autopct' in functione 'plt.pie()'?
Quoties usus est 'plt.bar()' in codice pro graphico verticali?
Quoties usus est 'plt.bar()' in codice pro graphico verticali?
Quod optionum in 'plt.bar()' non est modificandum?
Quod optionum in 'plt.bar()' non est modificandum?
Quid significat 'plt.xticks()' in codice?
Quid significat 'plt.xticks()' in codice?
Quod genus chartae non potest creari cum pandas?
Quod genus chartae non potest creari cum pandas?
Quis est effectus invocationis df.cumsum() in dataframe?
Quis est effectus invocationis df.cumsum() in dataframe?
Quod color non est in lista colorum pro plotatione?
Quod color non est in lista colorum pro plotatione?
Quot elementos habet dataframe df in exemplo dato?
Quot elementos habet dataframe df in exemplo dato?
Quale est exemplum stilorum linearium in matplotlib?
Quale est exemplum stilorum linearium in matplotlib?
Quid fit cum variabile t in codice dato?
Quid fit cum variabile t in codice dato?
Quod est primum gradus ad mutandum indicem nominis in dataframe?
Quod est primum gradus ad mutandum indicem nominis in dataframe?
Quod profectum datur cum plt.show() invocatur?
Quod profectum datur cum plt.show() invocatur?
Quid facit instructio 'plt.barh()' in matplotlib?
Quid facit instructio 'plt.barh()' in matplotlib?
Quot puncta sunt in variabili 'x' exemplari 'plt.scatter()'?
Quot puncta sunt in variabili 'x' exemplari 'plt.scatter()'?
Quod attributum in 'plt.scatter()' dat punctis diversae magnitudinis?
Quod attributum in 'plt.scatter()' dat punctis diversae magnitudinis?
Quot et quales colores in graphica 'plt.scatter()' uti possunt?
Quot et quales colores in graphica 'plt.scatter()' uti possunt?
Quid facit instructio 'plt.text()' in bar chart?
Quid facit instructio 'plt.text()' in bar chart?
Quid significat 'plt.yticks()' exemplario?
Quid significat 'plt.yticks()' exemplario?
Quod attributum in 'plt.barh()' angularitatis colummorum regit?
Quod attributum in 'plt.barh()' angularitatis colummorum regit?
Quot annos in variabili 'years' in bar chart exhibentur?
Quot annos in variabili 'years' in bar chart exhibentur?
Quod est munus ad faciendum graphum linearem in codice dato?
Quod est munus ad faciendum graphum linearem in codice dato?
Quae optionis ad graphum areae creatio adhibetur?
Quae optionis ad graphum areae creatio adhibetur?
Quod color consilium 'viridis' in codice adhibetur?
Quod color consilium 'viridis' in codice adhibetur?
Quam multae columnas in DataFrame 'cp_df' sunt?
Quam multae columnas in DataFrame 'cp_df' sunt?
Quod munus cum 'stacked=True' adhibetur?
Quod munus cum 'stacked=True' adhibetur?
Quomodo sunt valores in 'customer_purchase' generati?
Quomodo sunt valores in 'customer_purchase' generati?
Quod est objective 'plt.legend()'?
Quod est objective 'plt.legend()'?
Quot species graphorum in functione 'draw_plots()' creantur?
Quot species graphorum in functione 'draw_plots()' creantur?
Quod attributum ad argumentum 'c' in 'plt.scatter()' adhibetur?
Quod attributum ad argumentum 'c' in 'plt.scatter()' adhibetur?
Quod argumentum ad definiendum ratio axes X adhibetur?
Quod argumentum ad definiendum ratio axes X adhibetur?
Flashcards
Python Data Visualization
Python Data Visualization
A method of representing data graphically in Python using libraries like matplotlib and seaborn.
Pandas DataFrames
Pandas DataFrames
Two-dimensional data structures in Python used for data manipulation and analysis.
Data Visualization Libraries
Data Visualization Libraries
Python libraries (matplotlib, seaborn, plotnine, folium, plotly, pyecharts) that make creating graphs and charts easy.
Pandas Plotting Types
Pandas Plotting Types
Signup and view all the flashcards
Dataframe Plotting in Pandas
Dataframe Plotting in Pandas
Signup and view all the flashcards
Pandas DataFrame index
Pandas DataFrame index
Signup and view all the flashcards
Pandas plot kind = 'barh'
Pandas plot kind = 'barh'
Signup and view all the flashcards
Pandas plot kind = 'hist'
Pandas plot kind = 'hist'
Signup and view all the flashcards
Pandas plot kind = 'bar'
Pandas plot kind = 'bar'
Signup and view all the flashcards
Pandas plot kind = 'box'
Pandas plot kind = 'box'
Signup and view all the flashcards
Matplotlib plot function
Matplotlib plot function
Signup and view all the flashcards
NumPy array creation
NumPy array creation
Signup and view all the flashcards
Plotting color setting
Plotting color setting
Signup and view all the flashcards
matplotlib.pyplot.pie() utilisatio
matplotlib.pyplot.pie() utilisatio
Signup and view all the flashcards
matplotlib.pyplot.bar() utilisatio
matplotlib.pyplot.bar() utilisatio
Signup and view all the flashcards
argumentum 'my_colors'
argumentum 'my_colors'
Signup and view all the flashcards
argumentum 'values' in graphico
argumentum 'values' in graphico
Signup and view all the flashcards
argumentum 'autopct' in graphico
argumentum 'autopct' in graphico
Signup and view all the flashcards
plt.barh() optiones
plt.barh() optiones
Signup and view all the flashcards
plt.text() optiones
plt.text() optiones
Signup and view all the flashcards
Scatter diagramata: area
Scatter diagramata: area
Signup and view all the flashcards
Scatter diagramata: cmap
Scatter diagramata: cmap
Signup and view all the flashcards
np.random.randint()
np.random.randint()
Signup and view all the flashcards
"plt.xticks()" et "plt.yticks()"
"plt.xticks()" et "plt.yticks()"
Signup and view all the flashcards
Matplotlib: plt.plot()
Matplotlib: plt.plot()
Signup and view all the flashcards
Numpy: np.arange()
Numpy: np.arange()
Signup and view all the flashcards
Matplotlib: plt.fill_between()
Matplotlib: plt.fill_between()
Signup and view all the flashcards
plt.legend()
plt.legend()
Signup and view all the flashcards
Matplotlib: plt.title()
Matplotlib: plt.title()
Signup and view all the flashcards
plt.xlabel()
& plt.ylabel()
plt.xlabel()
& plt.ylabel()
Signup and view all the flashcards
Matplotlib: plt.show()
Matplotlib: plt.show()
Signup and view all the flashcards
cmap='viridis'
cmap='viridis'
Signup and view all the flashcards
Pandas: df.plot()
Pandas: df.plot()
Signup and view all the flashcards
Pandas: df.transpose()
Pandas: df.transpose()
Signup and view all the flashcards
Study Notes
Python Programming - Visualization
- The presentation covers Python programming and visualization techniques.
- The year is 2024, second semester.
- The subject is software integration.
Data Visualization Modules
- matplotlib: A fundamental module for creating static, interactive, and animated visualizations in Python.
- Seaborn: Built on top of matplotlib, providing a high-level interface for visualizing statistical data.
- plotnine: A Python library for creating grammar of graphics style plots that follows the aesthetics of the R package 'ggplot2'.
- folium: A library for creating interactive maps within Python applications.
- plotly: A powerful interactive visualization library for creating various chart types including plots and graphs.
- pyecharts: A Python library that enables developers to create interactive charts (e.g., charts, graphs) in HTML format that can be viewed in a web browser.
Anatomy of a Figure
- Title: A descriptive label for the figure.
- Legend: A set of labels associated with different plots in the figure.
- Grid: Provides a background grid structure to aid in visualizing data and plots.
- Markers (Scatter Plot): Data points that are represented as symbols on a plot.
- Axes (Line Plot): The axes (x and y) on a graph and the labeling of each axis.
- Spines: The lines forming the borders of the figure.
Pandas Plotting
- 'line': Creates line graphs, useful for time series data.
- 'bar': Uses bars to represent categories.
- 'barh': For horizontal bar graphs.
- 'hist': Generates histograms, useful to visualize the distributions of data.
- 'box': Produces box-and-whisker plots for visualizing data distribution.
- 'area': Creates filled area charts that can be useful to highlight the cumulative effect of data over time.
Pandas Basic Graphing (1)
- Displays example code for importing Pandas and NumPy libraries and creating a DataFrame.
- Example uses
np.random.randn
to generate random data. - Shows how to plot the DataFrame using
df.plot()
.
Pandas Basic Graphing (2)
- Discusses generating plots with Pandas, adjusting dates, and changing data ranges.
- Demonstrates setting color options with lists containing colors.
Matplotlib Module: Graphing (1)
- Explains how to generate various types of plots using the Matplotlib library.
- Shows how to use
np.arange
to generate a sequence of numbers. - Explains plotting a line graph using
plt.plot(x, y, 'style')
.
Matplotlib Module: Pie Chart
- Explains use of Matplotlib to create a pie chart.
- Demonstrates using
plt.pie
for data visualization. - Explains how to set the colors and display percentages on the slices.
Matplotlib Module: Vertical Bar Graph
- Shows how to use Matplotlib to create a vertical bar chart.
- Explains using
plt.bar()
for creating vertical bar charts. - Detailed example that includes x-axis labels, titles, and data labeling within the charts.
Matplotlib Module: Horizontal Bar Graph
- Demonstrates creating horizontal bar charts with Matplotlib.
- Illustrates using
plt.barh()
to create horizontal bar graphs. - Shows how to include labels, titles, and detailed values within each bar.
Scatter Plot (1)
- Describes creating scatter plots in Matplotlib with example code.
- Provides a step-by-step explanation of the code and plotting method.
- Shows how to adjust X and Y-axis labels and values, modify color schemes, and add custom ticks.
Scatter Plot (2)
- Explains how to generate scatter plots with varying area sizes and different color schemes.
- Shows how to control plot elements with
size
andcmap
arguments. - Provides examples and instructions for modifying these parameters to customize the visualization.
Line Graph
- Shows plotting a simple line graph in Matplotlib with example code.
- Explains using
plt.plot()
to generate line graphs. - Describes how to customize the plot (e.g., line styles, colors).
Area Graph
- Describes creating area graphs with Pandas and Matplotlib libraries.
- Demonstrates data visualization with
plt.fill_between()
.
Combining Plots / Styling
- Details a method for creating a range of chart types (line, bar, area, pie) in sequence for a given data frame.
- Explanations include the use of several functions and methods, and how to use variable data frames.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
Haec praesentatio explorat technicas programmandi Python et visualisationis. In secundo semestri anni 2024, discimus de integratione software et diversis bibliothecis pro visualisatione data. Disce de matplotlib, Seaborn, plotly et aliis instrumentis.