Descubre todo lo que necesitas saber sobre Big Data y Hadoop en este quiz
27 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

¿Cuál es el objetivo principal de Hadoop?

  • Mover grandes ficheros de datos
  • Administrar el espacio de nombres de los sistemas de archivos
  • Procesar grandes conjuntos de datos localmente (correct)
  • Almacenar archivos pequeños de manera confiable
  • ¿Qué es el Business Analytics (BA)?

  • La combinación de matemáticas, estadística, programación y contexto del problema
  • La exploración metódica de datos en una organización (correct)
  • La resolución práctica de algunos algoritmos susceptibles de ser paralelizados
  • El procesamiento distribuido de grandes conjuntos de datos
  • ¿Cuál es la función de la función Map() en el modelo de programación MapReduce?

  • Administrar el espacio de nombres del sistema de archivo en HDFS
  • Enviar periódicamente un Heartbeat y un Blockreport al NameNode
  • Ser aplicada en paralelo para cada grupo, produciendo una colección de valores para cada dominio
  • Encargarse del mapeo y ser aplicada en paralelo para cada elemento de la entrada (correct)
  • ¿Qué es el Data Science?

    <p>La combinación de matemáticas, estadística, programación y contexto del problema</p> Signup and view all the answers

    ¿Qué es Hadoop Common?

    <p>Proporciona acceso a los sistemas de archivos soportados por Hadoop</p> Signup and view all the answers

    ¿Qué es el paradigma de programación utilizado por Hadoop?

    <p>MapReduce</p> Signup and view all the answers

    ¿Qué es MapReduce?

    <p>Un modelo de programación diseñado para dar soporte a la computación paralela sobre grandes conjuntos de datos repartidos entre varios ordenadores</p> Signup and view all the answers

    ¿Cuál es la función de la función Reduce() en el modelo de programación MapReduce?

    <p>Ser aplicada en paralelo para cada grupo, produciendo una colección de valores para cada dominio</p> Signup and view all the answers

    ¿Qué es Hadoop Distributed File System (HDFS)?

    <p>El sistema de archivos distribuido propio de Hadoop, diseñado para escalar a decenas de petabytes de almacenamiento</p> Signup and view all the answers

    ¿Cuál es el objetivo principal de Hadoop?

    <p>Procesar grandes conjuntos de datos localmente</p> Signup and view all the answers

    ¿Qué es el Business Analytics (BA)?

    <p>La exploración metódica de datos en una organización</p> Signup and view all the answers

    ¿Cuál es la función de la función Map() en el modelo de programación MapReduce?

    <p>Encargarse del mapeo y ser aplicada en paralelo para cada elemento de la entrada</p> Signup and view all the answers

    ¿Qué es el Data Science?

    <p>La combinación de matemáticas, estadística, programación y contexto del problema</p> Signup and view all the answers

    ¿Qué es Hadoop Common?

    <p>Proporciona acceso a los sistemas de archivos soportados por Hadoop</p> Signup and view all the answers

    ¿Qué es el paradigma de programación utilizado por Hadoop?

    <p>MapReduce</p> Signup and view all the answers

    ¿Qué es MapReduce?

    <p>Un modelo de programación diseñado para dar soporte a la computación paralela sobre grandes conjuntos de datos repartidos entre varios ordenadores</p> Signup and view all the answers

    ¿Cuál es la función de la función Reduce() en el modelo de programación MapReduce?

    <p>Ser aplicada en paralelo para cada grupo, produciendo una colección de valores para cada dominio</p> Signup and view all the answers

    ¿Qué es Hadoop Distributed File System (HDFS)?

    <p>El sistema de archivos distribuido propio de Hadoop, diseñado para escalar a decenas de petabytes de almacenamiento</p> Signup and view all the answers

    ¿Qué es el Business Analytics?

    <p>Es la exploración metódica de datos en una organización con énfasis en el análisis estadístico para la toma de decisiones basada en los datos</p> Signup and view all the answers

    ¿Cuáles son los roles en proyectos de Big Data?

    <p>Higienistas de datos, exploradores de datos, arquitectos de datos, científicos de datos y expertos de campaña</p> Signup and view all the answers

    ¿Qué es MapReduce?

    <p>Un modelo de programación diseñado para dar soporte a la computación paralela sobre grandes conjuntos de datos repartidos entre varios ordenadores.</p> Signup and view all the answers

    ¿Qué es Hadoop?

    <p>Un framework de código abierto utilizado para el procesamiento distribuido de grandes conjuntos de datos.</p> Signup and view all the answers

    ¿Qué es HDFS?

    <p>El sistema de archivos distribuido propio de Hadoop diseñado para escalar a petabytes de almacenamiento.</p> Signup and view all the answers

    ¿Cómo está compuesto Hadoop?

    <p>Hadoop Distributed File System, Hadoop MapReduce y Hadoop Common.</p> Signup and view all the answers

    ¿Qué es el NameNode en HDFS?

    <p>El servidor que administra el espacio de nombres del sistema de archivo.</p> Signup and view all the answers

    ¿Qué es el Blockreport en HDFS?

    <p>Una lista de todos los bloques en un DataNode.</p> Signup and view all the answers

    ¿Qué es el EditLog en HDFS?

    <p>Un registro de transacciones para grabar persistentemente cada cambio que se produce en los metadatos del sistema.</p> Signup and view all the answers

    Study Notes

    Conceptos clave sobre Big Data y procesamiento de datos

    1. Existen dos tipos de procesamiento de datos: en modo batch o lotes y en modo stream o tiempo (semi)-real.

    2. El Business Analytics (BA) es la exploración metódica de datos en una organización con énfasis en el análisis estadístico para la toma de decisiones basada en los datos.

    3. El Data Science combina matemáticas, estadística, programación y el contexto del problema para resolver problemas de Big Data.

    4. Los roles en proyectos de Big Data incluyen higienistas de datos, exploradores de datos, arquitectos de datos, científicos de datos y expertos de campaña.

    5. Los perfiles TIC especializados en nuevas tecnologías son necesarios para el procesamiento de datos mediante técnicas de Big Data.

    6. MapReduce es un modelo de programación diseñado para dar soporte a la computación paralela sobre grandes conjuntos de datos repartidos entre varios ordenadores.

    7. MapReduce se emplea en la resolución práctica de algunos algoritmos susceptibles de ser paralelizados.

    8. Las funciones Map y Reduce están definidas ambas con respecto a datos estructurados en tuplas del tipo (clave, valor).

    9. La función Map() se encarga del mapeo y es aplicada en paralelo para cada elemento de la entrada.

    10. La función Reduce() es aplicada en paralelo para cada grupo, produciendo una colección de valores para cada dominio.

    11. El modelo de programación MapReduce se ejecuta de forma distribuida a lo largo de varias máquinas.

    12. Las salidas se distribuyen en un fichero completo o en varios ficheros que pueden ser la entrada de otro MapReduce o pueden ser procesados por cualquier otro programa que necesite estos datos.Introducción a Hadoop y su arquitectura

    13. Hadoop es un framework de código abierto utilizado para el procesamiento distribuido de grandes conjuntos de datos.

    14. Utiliza el paradigma de programación MapReduce para procesar los datos en paralelo.

    15. Hadoop está compuesto por tres piezas: Hadoop Distributed File System (HDFS), Hadoop MapReduce y Hadoop Common.

    16. HDFS es el sistema de archivos distribuido propio de Hadoop, diseñado para escalar a decenas de petabytes de almacenamiento.

    17. HDFS tiene una arquitectura maestro-esclavo, con un NameNode que administra el espacio de nombres del sistema de archivo y DataNodes que administran el almacenamiento de información.

    18. Hadoop utiliza la replicación de datos para preservar copias en diferentes racks y reducir el impacto de fallos.

    19. Hadoop es altamente tolerante a fallos y utiliza el "ping" para comprobar el estado de los workers.

    20. El objetivo de Hadoop es procesar grandes conjuntos de datos localmente, evitando el movimiento de grandes ficheros.

    21. Hadoop es inspirado en el proyecto de Google File System (GFS).

    22. Hadoop Common proporciona acceso a los sistemas de archivos soportados por Hadoop.

    23. Un clúster típico de Hadoop incluye un nodo maestro y múltiples nodos esclavo.

    24. Hadoop está construido utilizando el lenguaje Java y es altamente portátil.Arquitectura de HDFS: NameNode y DataNode

    25. HDFS es el sistema de archivos distribuido de Hadoop.

    26. HDFS divide los archivos en bloques y los replica para tolerancia a fallos.

    27. El NameNode es el árbitro y el repositorio de todos los metadatos HDFS.

    28. El NameNode no tiene acceso a los datos del usuario.

    29. HDFS está diseñado para almacenar archivos muy grandes de manera confiable.

    30. Los bloques de un archivo, excepto el último, son del mismo tamaño.

    31. Los archivos en HDFS son de una sola escritura y tienen estrictamente un escritor en cualquier momento.

    32. El NameNode toma todas las decisiones con respecto a la replicación de bloques.

    33. Los DataNodes envían periódicamente un Heartbeat y un Blockreport al NameNode.

    34. Un Heartbeat indica que el DataNode funciona correctamente.

    35. Un Blockreport contiene una lista de todos los bloques en un DataNode.

    36. El NameNode utiliza un registro de transacciones llamado EditLog para grabar persistentemente cada cambio que se produce en los metadatos del sistema.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    ¿Quieres conocer los conceptos clave sobre Big Data y procesamiento de datos? ¿Te interesa aprender sobre Hadoop y su arquitectura? Este quiz es para ti. Aprenderás sobre los diferentes tipos de procesamiento de datos, los roles en proyectos de Big Data, la arquitectura de Hadoop y cómo funciona HDFS. También conocerás detalles sobre el NameNode y DataNode y cómo se comunican entre sí. ¡Ponte a prueba y dem

    More Like This

    Use Quizgecko on...
    Browser
    Browser