Podcast
Questions and Answers
મધ્યવર્તી સ્થિતિમાનનાં કયાં ત્રણ પ્રકાર છે?
મધ્યવર્તી સ્થિતિમાનનાં કયાં ત્રણ પ્રકાર છે?
મધ્યક, બહુલક, અને મધ્યસ્થ.
Probability P(E) શું દર્શાવે છે?
Probability P(E) શું દર્શાવે છે?
P(E) ઘટનાના ઉદ્ભવવા માટેના પ્રયત્નોની સંખ્યા અને તમામ શક્ય પરિણામોની કુલ સંખ્યાનો suhte છે.
કડાક્ષ્યની સંભાવના ક્યારે 0 અથવા 1 હશે?
કડાક્ષ્યની સંભાવના ક્યારે 0 અથવા 1 હશે?
કોઈ ઘટનાની સંભાવના 0 છે જ્યારે તે અશક્ય છે, અને 1 છે જ્યારે તે નિશ્ચિત છે.
પ્રાયોગિક સંભાવના શેને કહે છે?
પ્રાયોગિક સંભાવના શેને કહે છે?
Signup and view all the answers
E માટે P(E) + P(E') = 1 કેમ છે?
E માટે P(E) + P(E') = 1 કેમ છે?
Signup and view all the answers
મધ્યક શોધવા માટેની સીધી રીત શું છે?
મધ્યક શોધવા માટેની સીધી રીત શું છે?
Signup and view all the answers
વર્ગીકૃત માહિતી પરથી મધ્યકનું શું મહત્વ છે?
વર્ગીકૃત માહિતી પરથી મધ્યકનું શું મહત્વ છે?
Signup and view all the answers
શ્રેણી તરીકે વધુ એક માનવિક પ્રયોગો કયા છે?
શ્રેણી તરીકે વધુ એક માનવિક પ્રયોગો કયા છે?
Signup and view all the answers
Study Notes
આંકડાશાસ્ત્ર અને સંભાવનાના અભ્યાસ નોંધો
- આંકડાશાસ્ત્ર એ એક વિજ્ઞાન છે જે માહિતી એકત્રિત કરવા, ગોઠવવા અને વિશ્લેષણ કરવાની રીતોનો અભ્યાસ કરે છે.
- સંભાવના એ ગાણિતિક વિજ્ઞાન છે જે કોઈ ઘટના બનવાની શક્યતાનું માપ આપે છે.
- મધ્યક એ આંકડાશાસ્ત્રના મહત્વપૂર્ણ માપ છે જે ડેટાના મધ્ય સરેરાશ મૂલ્યને માપે છે.
- વર્ગીકૃત માહિતીનો મધ્યક શોધવા માટે, દરેક વર્ગ અંતરાલની મધ્યકિંમત અને તેની અનુરૂપ આવૃત્તિનો ઉપયોગ કરવો જરૂરી છે.
- મધ્યસ્થ એ ડેટામાં મધ્ય મુલ્ય છે.
- બહુલક એ ડેટામાં સૌથી વધુ વાર આવતા મૂલ્યને માપે છે.
- સંચયી આવૃતિ કોષ્ટક "થી ઓછા" અને "થી વધુ" પ્રકારનું આપે છે.
- ઓજીવ એ સંચયી આવૃતિ-વિતરણનું આલેખાત્મક નિરૂપણ છે.
- યાદચ્છિક પ્રયોગો, તેમના પરિણામો, ઘટનાઓ અને તેમની સંભાવનાનો અભ્યાસ સંભાવનામાં કરવામાં આવે છે.
- કોઈપણ ઘટનાની સંભાવના 0 અને 1 ની વચ્ચે હોય છે.
- કોઈપણ પ્રયોગની તમામ પ્રાથમિક ઘટનાઓની સંભાવનાઓનો સરવાળો 1 હોય છે.
- અશક્ય ઘટનાની સંભાવના 0 અને નિશ્ચિત ઘટનાની સંભાવના 1 હોય છે.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
આ આંકડાશાસ્ત્ર અને સંભાવનાનો અભ્યાસ ખેંચાતો ક્વિઝ છે જેમાં પ્રાથમિક આંકડાશાસ્ત્રના ધોરણો અને સંભાવનાના સિદ્ધાંતોને આવરી લેવામાં આવ્યા છે. આ માહિતીમાં મધ્યક, મધ્યસ્થ, અને બહુલક જેવા મહત્વપૂર્ણ માપો પર ધ્યાન કેન્દ્રિત કરવામાં આવ્યું છે. આ ક્વિઝનો ઉદ્દેશ વિદ્યાર્થીઓને આ વિષયમાં મજબૂત grasp મેળવવામાં મદદ કરવાનો છે.