Sec 2.8 Algebra of Functions and Function Composition PDF

Summary

This document discusses the algebra of functions, including operations like sums, differences, products, and quotients. It also examines the concept of the difference quotient, an important tool in calculus.

Full Transcript

## Section 2.8 ### Algebra of Functions and Function Composition ### Prior to Class Lecture - Read Section 2.8 (pp 262-265, 270) - Be familiar with the Sum, Difference, Product and Quotient of Functions - Be able to find and simplify the difference quotient for a given function - Note how to estima...

## Section 2.8 ### Algebra of Functions and Function Composition ### Prior to Class Lecture - Read Section 2.8 (pp 262-265, 270) - Be familiar with the Sum, Difference, Product and Quotient of Functions - Be able to find and simplify the difference quotient for a given function - Note how to estimate function values from a graph ### Class Lecture #### Questions from Section 2.7??? #### Sum, Difference, Product, and Quotient of Functions If *f(x)* and *g(x)* are functions, then for all *x* common to domains of both functions, the sum, difference, product, and quotient of *f(x)* and *g(x)* are defined as follows: 1. **Sum**: *(f + g)(x) = f(x) + g(x)* 2. **Difference**: *(f – g)(x) = f(x) – g(x)* 3. **Product**: *(fg)(x) = (f(x))(g(x))* 4. **Quotient**: *(f / g)(x) = f(x) / g(x)*, provided *g(x) ≠ 0* If *f(x) = x² + 1* and *g(x) = 3x – 5*, find the following and give the domain in interval notation. 1. *(f + g)(x) = f(x) + g(x)* - * = x² + 1 + 3x – 5* - * = x² + 3x – 4* - domain *(– ∞, ∞)* 2. *(f – g)(x) = f(x) – g(x)* - * = x² + 1 – (3x – 5)* - * = x² + 1 – 3x + 5* - * = x² – 3x + 6* - *(– ∞, ∞)* domain 3. *(fg)(x) = (f(x))(g(x))* - * = (x² + 1)(3x – 5)* - * = 3x³ – 5x² + 3x – 5* - domain *(– ∞, ∞)* 4. *(f / g)(x) = f(x) / g(x)*, *g(x) ≠ 0* - * = x² + 1 / 3x – 5* - domain *(– ∞, 5/3) U (5/3, ∞)* 5. *(f + g)(3) = x² + 3x – 4* - * = 3² + 3(3) – 4* - * = 9 + 9 – 4* - * = 14* 6. *(fg)(4) = (f(x))(g(x))* - * = (4² + 1)(3(4) – 5)* - * = (17)(7)* - * = 119* If *f(x) = x² – 5* and *g(x) = √(6 – x)*, find *(fg)(x)* and give the domain in interval notation. - *(fg)(x) = (f(x))(g(x))* - * = (x² – 5)(√(6 – x))* - * = x²√(6 – x) – 5√(6 – x)* - domain *(– ∞, 6]* Given *m(x) = (x – 4) / (x² – 25)* and *n(x) = (x – 4) / (5 – x)*, find the following and give the domain in interval notation. - *m(x) = (x – 4) / (x² – 25)* - *n(x) = (x – 4) / (5 – x)*, *x ≠ 5* 1. *(m / n)(x) = m(x) / n(x)* - * = ((x – 4)/(x² – 25)) / ((x – 4)/(5 – x))* - * = (x – 4) / (x² – 25) * (5 – x) / (x – 4)* - * = (5 – x) / (x² – 25)* - * = (5 – x) / ((x + 5)(x – 5))* - * = -1 / (x + 5)*, *x ≠ -5, 5, 4* - domain *(– ∞, –5) U (–5, 4) U (4, 5) U (5, ∞)* 2. *(m + n)(x) = (x – 4) / (x² – 25) + (x – 4) / (5 – x)* - * = ((x – 4)/(x² – 25)) + ((x – 4)/(5 – x))* - * = ((x – 4)(5 – x) + (x – 4)(x² – 25)) / ((x² – 25)(5 – x))* - * = (5x – x² – 20 + 4x + x³ – 25x) / ((x² – 25)(5 – x))* - * = (x³ – x² – 16x – 20) / ((x² – 25)(5 – x))* - domain *x≠-5, 5* - *(– ∞, -5) U (-5, 5) U (5, ∞)* Two graphs are shown. Please describe them. * The first graph shows the functions *f(x)* and *g(x)*. * The second graph shows the function *(f + g)(x)*. * The third graph shows the function *(f - g)(x)* * The fourth graph shows the calculation for *(f * g)(-2) = (f(-2))(g(-2))* and *( (f / g)(3) = f(3) / g(3))*. ### Difference Quotient * *f(x) = 4x + 7* * *f(x + h) – f(x) / h* * *f(3) = 4(3) + 7* * * = 12 + 7* * * = 19* * *f(x + h) = 4(x + h) + 7* * * = 4x + 4h + 7* * **f(x) = 4x + 7** * *f(x + h) – f(x) / h = (4x + 4h + 7 – (4x + 7)) / h* * * = (4x + 4h + 7 – 4x – 7) / h* * * = 4h / h* * * = 4, h ≠ 0* * *f(x) = 2x² – 3x + 4* * * f(x + h) – f(x) / h* * *f(x + h) – f(x) = 2(x + h)² – 3(x + h) + 4 – (2x² – 3x + 4) / h* * * = 2(x² + 2xh + h²) – 3x – 3h + 4 – 2x² + 3x – 4 / h* * * = 2x² + 4xh + 2h² – 3x – 3h + 4 – 2x² + 3x – 4 / h* * * = 4xh + 2h² – 3h / h* * * = h(4x + 2h – 3) / h* * * = 4x + 2h – 3, h≠ 0* Chapter 2, Section 8: Lecture: Introduction to Difference Quotient

Use Quizgecko on...
Browser
Browser