Year 10 Extension Mathematics Practice Exam PDF

Summary

This is a practice exam for year 10 extension mathematics. It contains multiple questions and problem-solving exercises covering various math concepts suitable for secondary school students. The exam includes questions on topics like simplifying mathematical expressions, factorisation, solving equations, and using trigonometric functions. The mathematical problems help strengthen problem-solving skills in algebra, trigonometry, and calculus.

Full Transcript

    -- ----- ----- ----- ----- A  B  C  D  BJI QTR BJI CJO **Year 10 Extension Mathematics**  **Practice Examination Part A: CAS FREE**  **Reading time: 10 minutes for both Parts A and B**  **Writing time: 30 minutes**  **Structure of examinatio...

    -- ----- ----- ----- ----- A  B  C  D  BJI QTR BJI CJO **Year 10 Extension Mathematics**  **Practice Examination Part A: CAS FREE**  **Reading time: 10 minutes for both Parts A and B**  **Writing time: 30 minutes**  **Structure of examination** Number of questions Number of questions to be answered --------------------- ------------------------------------ ---- 5 5 20 +-----------------------------------------------------------------------+ | - Students are permitted to bring into the examination room: pens, | | pencils, highlighters, erasers, sharpeners, rulers. | | | | - For Part A: CAS FREE students are **NOT** permitted to use | | calculators but are **allowed** to use the bound reference or | | lecture pad of notes. | | | | - Students are not permitted to bring into the examination room: | | blank sheets of paper and/or white out liquid/tape. | | | | **Materials supplied** | | | | - - | | | | | | | | - - - - - | +-----------------------------------------------------------------------+ +-----------------------------------------------------------------------+ | **Students are NOT permitted to bring mobile phones or electronic | | devices that are capable of storing, receiving or transmitting | | information or electronic signals, such as recorded music and video | | players, organisers, dictionaries and computerised watches** **and/or | | any other unauthorised electronic devices into the examination | | room.** | | | | **Students must not disclose the contents of the task; to do so will | | be a breach of guidelines and will be dealt with according to school | | policies.** | +-----------------------------------------------------------------------+ +-----------------------------------------------------------------------+ | **Instructions** | | | | Answer **all** questions in the space provided. | | | | Unless otherwise specified an **exact** answer is required to a | | question. | | | | In questions where more than one mark is available, appropriate | | working **must** be shown. | | | | Unless otherwise indicated, the diagrams in this book are **not** | | drawn to scale. | +-----------------------------------------------------------------------+ **Question 1 (4 marks)** Simplify each of the following expressions, **expressing any answers with positive indices only**. a. -- -- b. [\$\\left( \\frac{8}{3} \\right)\^{- 1}\$]{.math.inline} -- -- c. [3*y*^0^]{.math.inline} -- -- d. [\$16\^{\\frac{3}{4}}\$]{.math.inline} -- -- **Question 2 (4 marks)** a. Factorise [*x*^2^ − 2*x* − 6]{.math.inline} by first completing the square 2 marks -- -- b. Solve the equation [*x*^2^ − 2*x* − 6 = 0]{.math.inline} 1 mark -- -- c. Determine the turning point for the parabola [*y* = *x*^2^ − 2*x* − 6]{.math.inline} 1 mark -- -- d. **Question 3 (3 marks)** Solve the equation [2*x*^3^ − *x*^2^ − 7*x* + 6 = 0]{.math.inline} for [*x*]{.math.inline}. -- -- **Question 4 (7 marks)** Solve for [*x*]{.math.inline} in the following: a. [\$3\^{x + 1} = 9\\sqrt{3}\$]{.math.inline}. -- -- b. [4 − log~5~(*x*) = log~5~(15)]{.math.inline} -- -- c. ***\ ***[\$9\^{x + 1} = \\frac{1}{27\\sqrt{3}}\$]{.math.inline}. -- -- ***Question 5 (2 marks)*** State the exact values for the following expressions: a. [\$\\sin\\left( \\frac{3\\pi}{2} \\right)\$]{.math.inline} 1 mark -- -- b. [cos (180^∘^ + *θ*)]{.math.inline}, where [0 ≤ *θ* ≤ 90^∘^]{.math.inline} and [\$\\cos\\left( \\theta \\right) = \\frac{2}{3}\$]{.math.inline} 1 mark -- -- **End of Part A** **\ ** **Year 10 Extension Mathematics** **PRACTICE Examination Part B: CAS ACTIVE** **Reading time: 10 minutes (for both Parts A and B)** **Writing time: 30 minutes** **Structure of examination** Section  Number of questions  Number of questions to be answered  Number of marks  ---------- ---------------------- ------------------------------------- ------------------ A  5  5  5 B 3  3  15 Total 20 +-----------------------------------------------------------------------+ | - Students are permitted to bring into the examination room: pens, | | pencils, highlighters, erasers, sharpeners, rulers, one bound | | reference, one approved CAS calculator and, if desired, one | | scientific calculator. | | | | - Students are not permitted to bring into the examination room: | | blank sheets of paper and/or white out liquid/tape. | | | | **Materials supplied** | | | | - Question and answer book of 9 pages. | | | | - **Working space is provided throughout the book.** | | | | **Instructions** | | | | - Write your name in the space provided above on this page. | | | | - Circle your teacher's initials above. | | | | - Calculators of any type must **not** be used during reading time. | | | | - No dictionaries are allowed. | | | | - All responses must be written in English. | +-----------------------------------------------------------------------+ +-----------------------------------------------------------------------+ | **Students are NOT permitted to bring mobile phones or electronic | | devices that are capable of storing, receiving or transmitting | | information or electronic signals, such as recorded music and video | | players, organisers, dictionaries and computerised watches** **and/or | | any other unauthorised electronic devices into the examination | | room.** | | | | **Students must not disclose the contents of the task; to do so will | | be a breach of guidelines and will be dealt with according to school | | policies.** | +-----------------------------------------------------------------------+ **\ ** **SECTION A** +-----------------------------------------------------------------------+ | **Instructions for Section A** | | | | Answer **all** questions in pencil on the **answer sheet provided on | | page 4.** | | | | Choose the response that is **correct** for the question. | | | | A correct answer scores 1, an incorrect answer scores 0. | | | | Marks will **not** be deducted for incorrect answers. | | | | No marks will be given if more than one answer is selected for any | | question. | | | | Only the answers on the **answer sheet** will be marked. | +-----------------------------------------------------------------------+ **Question 1** The function with rule [*f*(*x*) = 5sin (*αx*)]{.math.inline} has a period of [\$\\frac{5\\pi}{2}\$]{.math.inline}. The value of [*α*]{.math.inline} is: A. [\$\\frac{1}{5}\$]{.math.inline} B. [\$\\frac{4}{5}\$]{.math.inline} C. 4 D. 5 **Question 2** The solution(s) to [8*x*^2^ − 14*x* + 3 = 0]{.math.inline} are: ------------------------------------------------------------------------------ **A.** \ [\$\$x = \\frac{1}{8},\\ x = - \\frac{1}{3}\$\$]{.math.display}\ -------- --------------------------------------------------------------------- **B.** \ [\$\$x = \\frac{3}{4},\\ x = - \\frac{1}{2}\$\$]{.math.display}\ **C.** \ [\$\$x = \\frac{1}{4},x = \\frac{3}{2}\$\$]{.math.display}\ **D.** \ [\$\$x = - \\frac{1}{2},\\ x = - \\frac{3}{8}\$\$]{.math.display}\ ------------------------------------------------------------------------------ **Question 3** Which of the following expressions are equivalent to [\$4\\sqrt{5}?\$]{.math.inline} ------------------------------------------------- **A.** \ [\$\$\\sqrt{100}\$\$]{.math.display}\ -------- ---------------------------------------- **B.** \ [\$\$\\sqrt{80}\$\$]{.math.display}\ **C.** \ [\$\$2\\sqrt{10}\$\$]{.math.display}\ **D.** \ [\$\$\\sqrt{40}\$\$]{.math.display}\ ------------------------------------------------- **\ ** **Question 4** Triangle ABC is constructed according to the diagram below: A triangle with a number of angles Description automatically generated with medium confidence What are the two possible angles for [∠*A*]{.math.inline} (in degrees), rounded to two decimal places? **A.** [33.89^∘^ ]{.math.inline}or[ 146.11^∘^]{.math.inline} -------- --------------------------------------------------------- **B.** [126.59^∘^ ]{.math.inline}or[ 53.41^∘^]{.math.inline} **C.** [108^∘^ ]{.math.inline}or[ 30^∘^]{.math.inline} **D.** [8.10^∘^ ]{.math.inline}or[ 171.90^∘^]{.math.inline} **Question 5** Which of the following could be the graph of [*y* =  − 2^ − *x*^ + 2 ]{.math.inline}? +-----------------------------------+-----------------------------------+ | **A.** | **B.** | | | | | ![Graph | Graph Preview | | Preview](media/image2.png) | | +===================================+===================================+ | **C.** | **D.** | | | | | ![](media/image4.png) | Graph Preview | +-----------------------------------+-----------------------------------+ **Multiple Choice Answer Sheet** *This answer sheet must not be detached from your examination paper.* +-----------------------------------------------------------------------+ | **INSTRUCTIONS FOR MULTIPLE CHOICE ANSWER SHEET** | +=======================================================================+ | Use a **PENCIL** for **ALL** entries. For each question, shade the | | box which indicates your answer. | | | | Marks will **NOT** be deducted for incorrect answers. | | | | **NO MARK** will be given if more than **one** answer is completed | | for any question. | | | | If you make a mistake, **ERASE** the incorrect answer - **DO NOT** | | cross it out. | +-----------------------------------------------------------------------+ ANSWER ONE PER LINE ------- --------------------- --- -- --- -- --- -- --- -- -- -- **1** A B C D **2** A B C D **3** A B C D **4** A B C D **5** A B C D **SECTION B** +-----------------------------------------------------------------------+ | **Instructions for Section B** | | | | Answer **all** questions in the space provided. | | | | Unless otherwise specified an **exact** answer is required to a | | question. | | | | Students that draw a happy cat on the front cover will get one bonus | | mark. All students will lose this mark if this is mentioned aloud. | | | | In questions where more than one mark is available, appropriate | | working **must** be shown. | | | | Unless otherwise indicated, the diagrams in this book are not drawn | | to scale. | +-----------------------------------------------------------------------+ **Question 1 (4 marks)** a. Solve the equation [8 = 10 + 4cos (*x*)]{.math.inline} for [0 ≤ *x* ≤ 2*π*]{.math.inline} *2 marks* -- -- b. Sketch the graph of the rule [*y* = 10 + 4cos (*x*)]{.math.inline} for [0 ≤ *x* ≤ 2*π*]{.math.inline}. Label any endpoints, axial intercepts and turning points. 2 marks ![A graph paper with lines and a number Description automatically generated with medium confidence](media/image6.png) **Question 2 (5 marks)** The Siamese Fireback and Tufted Puffin are two different kind of bird species whose populations are tracked by researchers. [*S*]{.math.inline} is used to track the Siamese Fireback's population.\ Initially, researchers count an initial population of 800 and notice that the population grows at a rate of 4% per year. [*T*]{.math.inline} is used to track the Tufted Puffin's population.\ Initially, researchers count an initial population of 300 and notice that the population grows at a rate of 15% per year. a. Write two equations to represent the populations of each bird after [*t*]{.math.inline} years. 2 marks -- -- b. How many years does it take for the Tufted Puffin's population to be greater than that of the Siamese Fireback? Give your answer to the nearest whole number. 2 marks -- -- A third bird, the pūteketeke, has a population [*P*]{.math.inline} that is modelled by the following equation: \ [*P* = *P*~0~ × *k*^*t*^]{.math.display}\ - After 2 years, the population of pūteketeke is 1000. - After 5 years, the population of pūteketeke is 1850. c. State the value of [*k*]{.math.inline}, correct to two decimal places, and [*P*~0~]{.math.inline} to the nearest whole number. 1 mark -- -- **Question 3 (6 marks)** A tunnel is mapped from above whose path is shown in the graph below: Graph Preview The tunnel takes the shape of a cubic function where [*y*]{.math.inline} is the distance north (in km) of [(0, 0)]{.math.inline} and [*x*]{.math.inline} is the distance east (in km) of [(0, 0).]{.math.inline} a. State the [*x*]{.math.inline}-intercepts of the cubic function 1 marks -- -- b. Given that the cubic function passes through the coordinate [\$\\left( 0,\\ \\frac{9}{5} \\right)\$]{.math.inline}, state the equation for the cubic in the form: [*y* = *a*(*x*−*m*)(*x*−*n*)^2^]{.math.inline} 2 marks -- -- An access tunnel whose position can be modelled by the equation [\$T = - \\frac{1}{2}x - 2\$]{.math.inline} is created where [*T*]{.math.inline} is the access tunnel's distance north of [(0, 0)]{.math.inline}. c. Find the point where the two tunnels meet. Give your answer to two decimal places. 3 marks -- -- **End of Part B and Exam**

Use Quizgecko on...
Browser
Browser