Trigonometric Ratios PDF
Document Details
Uploaded by WellPositionedApostrophe7763
Viqarunnisa Noon School and College
Tags
Summary
This document appears to be a set of trigonometry questions from a past paper. The questions involve trigonometric identities and calculations. The text may be in Bangla, though some of the question and answer are in English
Full Transcript
# 7.1 ## সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপাত **1(a).** tan(-1590°) = tan(1590°) = tan(4.360°+150°) = -tan150° = tan(180°-30°) = + tan30° = √3/3 **(b).** sin (-1230°) - cos {(2n + 1) (π/3)} = sin 1230° - cos 2n +π/3 = sin (3.360°+ 150°) - cos (π/3) = -sin 150°-(-cos(π/3)) = sin (180° -30°)...
# 7.1 ## সংযুক্ত ও যৌগিক কোণের ত্রিকোণমিতিক অনুপাত **1(a).** tan(-1590°) = tan(1590°) = tan(4.360°+150°) = -tan150° = tan(180°-30°) = + tan30° = √3/3 **(b).** sin (-1230°) - cos {(2n + 1) (π/3)} = sin 1230° - cos 2n +π/3 = sin (3.360°+ 150°) - cos (π/3) = -sin 150°-(-cos(π/3)) = sin (180° -30°) + cos(π/3) = sin 30°+ cos(π/3) = 1/2 + 1/2= 1 **(c).** sin 780° cos 390°+ sin (330°) cos( - 300°) = sin(2.360°+ 60°) cos (360°+30°) = sin780° cos 390°-sin330° cos 300° = sin (360°-30°) cos (360°~60°) = sin60°cos30°-(-sin30°)cos60° = √3/2 * √3/2 - (-1/2)*1/2 = 3/4 + 1/4 = 1 **(d).** cos420°sin(-300°) – sin870°cos570° =cos420°(-sin300°)-sin 870°cos570° = cos (360°+60°) sin(360°~60°) -sin(2.360°+150°) cos(2.360°-150°) =-cos60°(-sin60°)- sin150°cos150° = cos 60° sin 60° − sin (180°− 30°) cos (180°-30°) = cos 60° sin 60°- sin 30° (− cos 30°) = 1/2 * √3/2 - 1/2 * (-√3/2) = √3/4 + √3/4 = √3/2 = √3/2 ## প্রশ্নমালা VII A **(a).** sin² (25π/14) +sin2 (28π/14)+ sin² (29π/14) = sin² (π/7) + sin² (2π/7) + sin² (3π/7) = sin² (π/7) + cos² (π/7) + sin² (π/7) + cos² (π/7) =2 (sin² (π/7) + cos² (π/7)) = 2.1 = 2 **(b).** sin² (25π/18) + sin² (237π/18)+cos² (23π/8)+cos² (2π/8) = sin² 2 (π/18) + sin² (3π/18) + cos² (2π/8) + cos² (23π/8) = sin² (π/18) + sin² (π/6) + cos² (π/6) + cos² (π/4) = (sin² (π/18) + cos² (π/18) + sin² (π/6) + cos² (π/6) + cos² (π/4) = 1+1=2 **(c).** sec² (14π/17) -sec² (39π/17) = sec 2(- (3π/17)) - sec² (2π/17)+ cot (2π/17)- cot 2 (π/17 - 5/17) = sec² (3π/17)- sec² (2π/17)+ cot (2π/17)- cot 2 (11π/34) = sec² (3π/17)- sec² (2π/17)+ cot (2π/17)- cot 2 (27π/34) = sec² (3π/17)- sec² (2π/17) + cot (5π/17) - cot (2π/17)- cot (11π/34) = sec² (3π/17)- sec² (2π/17) + cot 2 (5π/17) - sec² (5π/17) + cot (3π/17) =(sec² (3π/17)- sec² (5π/17))-(sec² (3π/17)- tan 2 (5π/17) = seс 2( 3π/17 ) - sec ² (5π/17 ) - cot (3π/17) = seс 2 ( 3π/17 ) - tan 2 ( 3π/17 ) = sec² (3π/17) - tan² (3π/17) = 1 ## প্রশ্নমালা-VII A **প্রমাণ:** sin 2 (π/12) এর মান নির্ণয় কর। = tan15° + tan 45°+ tan(90°-15°)+ tan (90° +15°)+tan (180-45°) + tan (180°-15°) = tan15°+ tan 45° + cot15°-cot15°- tan45°-tan15°=0 ## ৮ different smart devices for a smarter life Grameenphone launches Alo loT solution with 8 different smart devices for a smarter life OPEN > # 7.1 ## প্রশ্নমালা-VII A **-1-1=0 (Ans.)** ** (d).** cos2 (π/24) +cos2 (2π/24)+cos2 (19π/24)+cos2 (31π/24)+cos2 (19π/24)+cos2 (219π/24)+cos2 (37π/24) = cos2 (π/24) +cos2 (2π/24)+cos2 (19π/24)+cos2 (31π/24)+cos2(π/24)+cos2 (19π/24)+cos2 (37π/24) = (sin² (19π/24) +cos² (19π/24) + sin² (19π/24) + cos² (19π/24))+ (sin² (19π/24) +cos² (19π/24) + sin² (19π/24) + cos² (19π/24))+ (sin² (19π/24)+cos² (19π/24)+sin² (37π/24)+cos² (37π/24)) = 1 + 1 = 2 (Ans.) **2(e).** sin² (23π/12) + sin² (25π/12) + sin² (29π/12) + sin² (211π/12) +sin2 (3π/12)+ sin2 (9π/12)+ sin2 (5π/12)+ sin2 (11π/12) **এর মান নির্ণয় কর।** =sin2 (π/12) +sin2 (3π/12) + sin2 (5π/12) + sin2 (2π/12) + sin 2 (3π/12) +sin2 (5π/12) +cos2 (π/12) + cos2 (π/3) =(sin² (π/12) + cos² (π/12)) + (sin² (π/3) + cos² (π/3) + (sin 2 (5π/12) + cos² (5π/12) =1+1+1=3(Ans.) **2.(f).** tan15°+tan45°+ tan75°+……+ tan165° = tan15°+ tan 45°+ tan 75°+ tan105°+ tan135°+tan165° = tan15°+ tan 45° + cot15°-cot15°- tan45°-tan15°=0(Ans.) ## প্রশ্নমালা-VII A **2(g).** cos² 150+ cos² 225° -- cos 235°+. + cos² 75° =cos²15°+cos² 25°+ cos² 35° + cos² 45° + cos² 55°+ cos² 65° + cos² 75 = cos²15° + cos² 25°+ cos 235° +()² √2 + cos² (90°-35°) + cos ² (90° − 25°) +cos² (90°-15°) 2 = cos 215°+ cos ¡² 25° + cos ² 35°+¦ + 2 = sin 235°+ sin225°+ sin 215° 25π 27π + sin² + sin 12 12 12 + sin 2 9π + sin^2 11π =sin2 12 12 12 2 3π 25π + sin² + sin 12 12 + sin²(+-) 5π +sin2(+) + sin 2 (+) = sin 2 2 12 +sin2 3π 2 25π + sin 12 12 12 3π 5π +cos2 + cos2 12 12 π =(sin²+ cos²) + (sin² 12 + (sin 2 5π 12 12 + cos =1+1+1=3(Ans.) **(2.(h).** cos 2 25°+ cos ² 35°+ cos ² 45° + cos 255°+ cos ² 65° = cos 225° + cos 235° + 2 ()*+ cos² (90° -35°) + cos² (90° - 25°) = cos²25° + cos² 35° + 1 + sin 235° 2 + sin 225° = (sin 225° + cos $ 225°) + + + (sin225° + cos225°) 1+1 = 1 + 2 = 5 2 (Ans.) **(2.(i).** sin 2 10° + sin 220° + sin230°+.....+sin280° = sin 210°+ sin 220°+ sin 230° + sin 240°+ sin 250° + sin ² 60° + sin 270° + sin280° = sin 210°+ sin 220°+sin230°+ sin240°+sin2(90°-40°) + sin²(90° – 30°) + sin ² (90° -20°) + sin²(90°-10°) = sin 2 10°+ sin 220°+ sin 230° + sin 240°+ cos 240°+ cos 230° + cos 220° + cos 210° = (sin²10° + cos210°) + (sin² 20° + cos²20°) + (sin230° + cos²30°) + (sin240°+ cos² 40°) = 1+1+1+1 = 4 (Ans.) ## উচ্চতর গণিত: ১ম পত্র সমাধান **এখন, ** tane + sec(-0) tano+sec0 = cote + cosec(-0) cot-cosed) -5-13 -5-13 = + 12 12 -12 13 12 12-13 5 5 =(--)x(-)=-x-= 3 531 25 2 5 10 5 18. 12 tane+sec(-0) 3 cot + cos ec(10) 10 0 **3. (c).** sin e = এবং 90° <<180° হলে 13 দেখাও যে, tan 0+ sec (10) cot0+ cos ec(-0) 10 3 = **প্রমাণ: **যেহেতু sine = 13 12 cosece = 12 13 এবং 90°< < 180°, .. cose = √1-sin20 5 13 = 1 144 25 5 = 1 169 169 13 13 2 13 .. sece = 5 12 .. cose = 13 5 ⇒ cote = 12 13 **এখন, ** tan 0+ sec(-0) tan 0+seco 5 = cot+cosec(-0) cote-coseco 12 13 25 144 12 5 5 -25 12 = X 169 169 13 5 13 5 = -5-13 13 12 12 12 10 =5x= 5 18 3 x(-) = 12 12 3 12 **3. (d).** cote = 3 ⇒ cote = 5 4 এবং cos e ঋণাত্মক হলে, cot (0) + cos eco cos 0+ sin (-0) এর মান নির্ণয় কর। ## প্রশ্নমালা-VII A **প্রমাণ:** যেহেতু cote => tane = 4 3 এবং Cose ঋণাত্মক sece- √1+tan20 16 1+ 9 25 5 = 9 3 3 cose = -২ এবং 5 = tane cose = 3. x(-) 5. = 4 5 cot(0) + coseco - cote + coseco cose-sin 0 sine cosece 54 4 এখন, cos0+ sin(-0) 3 +(- 4 4 -3-5 5 = = X 3-4 4 -3+4 55 40 = -10 (Ans.) ## উচ্চতর গণিত: ১ম পত্র সমাধান **4.** যোগফল নির্ণয় কর: ** (a).** sinx + sin(π + x) + sin(2π + x) + ...... (n+1)তম পদ পর্যন্ত = sinx - sinx + sinx - sinx + (n+1) তম পদ পর্যন্ত **n = 1 হলে, (1+1) বা ২য় পদ পর্যন্ত যোগফল** = sinx - sinx = 0 **n = 3 হলে, (3 + 1) বা ৪র্থ পদ পর্যন্ত যোগফল** = sinx - sinx + sinx - sinx = 0 **তদ্রূপ, n যেকোন বিজোড় সংখ্যা হলে নির্ণেয় যোগফল ::** 0 **আবার, n = 2 হলে (2 + 1) বা ৩য় পদ পযন্ত যোগফল** = sin x - sinx + sin x = sin x **n=4 হলে, (4 + 1) বা ৫ম পদ পর্যন্ত যোগফল** = sin x - sinx + sinx - sinx + sin x = sinx **তদ্রূপ, । যেকোন জোড় সংখ্যা হলে নির্ণেয় যোগফল** = sinx **(b).** cos e + cos (π + θ) + cos (2π + 0) + ... + cos (η π + 0) = cos + {-cose + cose cose + + (-1)" cos e } **n = 2 হলে যোগফল=** cose +{ - cose + cose } = cose **n = 4 হলে যোগফল =** cose + {-cose + cose cose + cose} = cose **তদ্রূপ, । যেকোনো জোড় হলে নির্ণেয় যোগফল =** cos X n = 1 হলে যোগফল = cos + (-cose) = 0 **n = 3 হলে যোগফল =** cose + {-cose + cose cose } = 0 **তদুপ, । যেকোনো বিজোড় হলে নির্ণেয় যোগফল =** 0 **(c).** tane + tan(π + Θ) + tan(2 π + 0) + + tan(η π + 0) = tane + tane + tane + ... + (n + 1) তম পদ পর্যন্ত = (n + 1) tane (Ans.) ** (d).** n ∈ Z হলে, sin{nπ+ (−1)". π/4 sin{n+ (−1)"} এর মান **নির্ণয় কর।** **সমাধান :** (a) sin{nx + (-1)"} π/4 n জোড় সংখ্যা হলে মনে করি, n = 2m, যেখানে me N. **:: sin{ n + (-1)"}** π/4 = sin {2m + (−1)2} π/4 = sin (2m + 1) π/4 = sin π/4 = 1 **n বিজোড় সংখ্যা হলে মনে করি n = 2m+ 1;** meN. **:: sin{n + (-1)"}** π/4 = sin (2m + 1) + (−1)2m+1π/4 π/4 = sin{2mπ + (π−1)} π/4 = sin(π - π/4 = sin π/4 = 1 **=-1 = R.H.S.** **5. (c)** দেওয়া আছে, 0= π/28 =140° **L.H.S** = tane tan30 tan50 tan70 tan90 tan110 tan130 = tane tan30 tan50 tan70 tan(140 - 50) tan(140 – 30) tan(140-0) = 1 tan 0 tan 30 tan 50 tan(-) 2 π tan 4 π tan(-50) tan( 30) tan(- 2 2 1 .1.tan50. tan30. tane tan 0 tan 30 tan 50 212 = 1 = R.H.S. **(d)** cos (π/11).cos (2π/11).cos (3π/11).cos (10π/11) **হলে n এর মান নির্ণয় কর।** **ধরি, **θ = π/11 ⇒ 110 =π+ 60+50 = π+ 5π/11 **এখন, **cos (π/11).cos (2π/11).cos (3π/11).cos (10π/11) = (cos (π/11).cos20.cos30.cos40.cos50) (cos60.cos70.cos80.cos90.cos100) = (cos (π/11).cos20.cos30.cos40.cos50) {cos(π-50).cos(π−40).cos(π−30). cos(π-20). cos(π-0)} =-cos² 0 cos²20 cos²30 cos²4 0 cos250 **=-cos² 0 cos²20 cos²30 cos240 cos250** **=-cos² 0 cos²2 0 cos²30 cos240 cos250** =(cos e cos2 0 cos3 è cos40 cos50)² 1 22 sin² 0 (2sin cos )2 (cos20 cos3 cos40 cos50)² 1 = 22 sin² 0 (sin20)2. 1 22 sin² 0 (2sin cos )2 (cos20 cos30 cos40 cos50)² 1 - (sin20)2 = 22 sin² 0 ## প্রশ্নমালা-VII A **2x** -1, n তম পদ মধ্যপদ। **অর্থাৎ n তম পদ মধ্যপদ।** ... মধ্যপদ = tan ne tan (π/4) = π 4 [4ηθ = π] 1 tane. tan (2n-1) = tane. tan (2ne – Θ) = tane. tan (π/2-0) [·:· 4ηθ= π] = tane.cote = 1 tan20.tan(2n-2)ө = tan20.tan (2ne -20) = tan 20. tan (-20) = tae. tan (2n-3)0 = 1 tan40. tan (2n – 4) = 1, ... ইত্যাদি। **অর্থাৎ, মধ্যপদ হতে সমদূরবর্তী পদ দুইটির গুণফল = 1** .. f(ө)f(20)f(30)……………… f{(2n - 1)9}= 1 ## প্রশ্নমালা VII B **1. মান নির্ণয় কর: ** **(a).** cosec 165° cosec 165° = cosec (90° +75°) = sec 75° = = 1 cos.75° cos(45° +30°) 1 cos.45° cos 30° - sin 45° sin 30° 1 2√2 = √3-1 2√2(√3+1)_2(√6+√2) = (√3−1)(√3+1) 2(√6 + √2) =√6+ √2 2 **(b).** cos 38°15′ sin 68°15′ – cos51°45′sin21°45′ = cos 38°15′ sin 68°15′ – cos (90°-38°15′) sin (90°- 68°15′) = cos 38°15′ sin 68°15′-. sin 38°15′ cos 68°15′ = sin (68°15′-38°15′) = sin30°=- 1 2 **(c).** cos 69°22′ cos 9°22′ + cos 80°38′ cos 20°38′ = cos 69°22′ cos 9°22′ + cos (90° 9°22') cos (90° – 69°22′) | = cos 69°22′ cos 9°22′ + = cos (69°22′- 9°22′) = cos 60° = 1 2 **(d).** sin 76°40′cos 16°40′- cos.73°20′sin 13°20′ =sin76°40′cos16°40′- cos(90°-16°40′) sin (90°- 76°40′) = sin 76°40′cos 16°40′- sin16°40′cos 76°40′ = sin (76°40′ -16°40′ )= sin60°= √3/2 **(e).** cos 17°40′ sin 77°40′ + cos 107°40′ sin 12°20′ = cos 17°40′ sin 77°40′ + . cos (90° +17°40′) sin(90°-77°40′) = cos17°40′sin77°40′- sin17°40′cos77°40′ = sin (77°40′-17°40′) = sin60°= √3/2 **(f).** সমাধান: cos 74°33' cos 14°33'+ cos 75°27' cos 15°27' [সি.'১৭] = cos 74°33' cos 14°33'+ cos (90°-14°33') cos (90°-74°33') = cos 69°22′ cos 9°22′+ sin 14°33' sin 74°33''' = cos (74°33'-14°33') = cos 60° = 1/2 ## প্রশ্নমালা-VII A **প্রমাণ:** যেহেতু cote => tane = 4 3 এবং Cose ঋণাত্মক sece- √1+tan20 16 1+ 9 25 5 = 9 3 3 cose = -২ এবং 5 = tane cose = 3. x(-) 5. = 4 5 cot(0) + coseco - cote + coseco cose-sin 0 sine cosece 54 4 এখন, cos0+ sin(-0) 3 +(- 4 4 -3-5 5 = = X 3-4 4 -3+4 55 40 = -10 (Ans.) **4.** যোগফল নির্ণয় কর: ** (a).** sinx + sin(π + x) + sin(2π + x) + ...... (n+1)তম পদ পর্যন্ত = sinx - sinx + sinx - sinx + (n+1) তম পদ পর্যন্ত **n = 1 হলে, (1+1) বা ২য় পদ পর্যন্ত যোগফল** = sinx - sinx = 0 **n = 3 হলে, (3 + 1) বা ৪র্থ পদ পর্যন্ত যোগফল** = sinx - sinx + sinx - sinx = 0 **তদ্রূপ, n যেকোন বিজোড় সংখ্যা হলে নির্ণেয় যোগফল ::** 0 **আবার, n = 2 হলে (2 + 1) বা ৩য় পদ পযন্ত যোগফল** = sin x - sinx + sin x = sin x **n=4 হলে, (4 + 1) বা ৫ম পদ পর্যন্ত যোগফল** = sin x - sinx + sinx - sinx + sin x = sinx **তদ্রূপ, । যেকোন জোড় সংখ্যা হলে নির্ণেয় যোগফল** = sinx **(b).** cos e + cos (π + θ) + cos (2π + 0) + ... + cos (η π + 0) = cos + {-cose + cose cose + + (-1)" cos e } **n = 2 হলে যোগফল=** cose +{ - cose + cose } = cose **n = 4 হলে যোগফল =** cose + {-cose + cose cose + cose} = cose **তদ্রূপ, । যেকোনো জোড় হলে নির্ণেয় যোগফল =** cos X n = 1 হলে যোগফল = cos + (-cose) = 0 **n = 3 হলে যোগফল =** cose + {-cose + cose cose } = 0 **তদুপ, । যেকোনো বিজোড় হলে নির্ণেয় যোগফল =** 0 **(c).** tane + tan(π + Θ) + tan(2 π + 0) + + tan(η π + 0) = tane + tane + tane + ... + (n + 1) তম পদ পর্যন্ত = (n + 1) tane (Ans.) ** (d).** n ∈ Z হলে, sin{nπ+ (−1)". π/4 sin{n+ (−1)"} এর মান **নির্ণয় কর।** **সমাধান :** (a) sin{nx + (-1)"} π/4 n জোড় সংখ্যা হলে মনে করি, n = 2m, যেখানে me N. **:: sin{ n + (-1)"}** π/4 = sin {2m + (−1)2} π/4 = sin (2m + 1) π/4 = sin π/4 = 1 **n বিজোড় সংখ্যা হলে মনে করি n = 2m+ 1;** meN. **:: sin{n + (-1)"}** π/4 = sin (2m + 1) + (−1)2m+1π/4 π/4 = sin{2mπ + (π−1)} π/4 = sin(π - π/4 = sin π/4 = 1 **=-1 = R.H.S.** **5. (c)** দেওয়া আছে, 0= π/28 =140° **L.H.S** = tane tan30 tan50 tan70 tan90 tan110 tan130 = tane tan30 tan50 tan70 tan(140 - 50) tan(140 – 30) tan(140-0) = 1 tan 0 tan 30 tan 50 tan(-) 2 π tan 4 π tan(-50) tan( 30) tan(- 2 2 1 .1.tan50. tan30. tane tan 0 tan 30 tan 50 212 = 1 = R.H.S. **(d)** cos (π/11).cos (2π/11).cos (3π/11).cos (10π/11) **হলে n এর মান নির্ণয় কর।** **ধরি, **θ = π/11 ⇒ 110 =π+ 60+50 = π+ 5π/11 **এখন, **cos (π/11).cos (2π/11).cos (3π/11).cos (10π/11) = (cos (π/11).cos20.cos30.cos40.cos50) (cos60.cos70.cos80.cos90.cos100) = (cos (π/11).cos20.cos30.cos40.cos50) {cos(π-50).cos(π−40).cos(π−30). cos(π-20). cos(π-0)} =-cos² 0 cos²20 cos²30 cos²4 0 cos250 **=-cos² 0 cos²20 cos²30 cos240 cos250** **=-cos² 0 cos²2 0 cos²30 cos240 cos250** =(cos e cos2 0 cos3 è cos40 cos50)² 1 22 sin² 0 (2sin cos )2 (cos20 cos3 cos40 cos50)² 1 = 22 sin² 0 (sin20)2. 1 22 sin² 0 (