Trigonometric Ratios Formula 10th Class PDF
Document Details
Uploaded by ChivalrousDragon2480
Rajpur +2 High School Rajpur
Tags
Summary
This document provides trigonometric formulas, including definitions of trigonometric ratios, square relations, and complementary angles. It also lists reciprocal relations and quotient relations. The formulas are relevant to high school mathematics.
Full Transcript
3. 𝒄𝒐𝒔𝜽. 𝒔𝒆𝒄𝜽 = 𝟏 Trigonometric Ratios 1 𝑐𝑜𝑠𝜃 = 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐...
3. 𝒄𝒐𝒔𝜽. 𝒔𝒆𝒄𝜽 = 𝟏 Trigonometric Ratios 1 𝑐𝑜𝑠𝜃 = 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑝 𝑠𝑒𝑐𝜃 1. 𝑠𝑖𝑛𝑒 (𝑠𝑖𝑛𝜃) = = 1 𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 ℎ 𝑠𝑒𝑐𝜃 = 𝑏𝑎𝑠𝑒 𝑏 𝑐𝑜𝑠𝜃 2. 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑐𝑜𝑠𝜃) = = ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 ℎ Square relation 3. 𝑡𝑎𝑛𝑔𝑒𝑛𝑡(𝑡𝑎𝑛𝜃) = 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 = 𝑝 1. 𝒔𝒊𝒏𝟐 𝜽 + 𝒄𝒐𝒔𝟐 𝜽 = 𝟏 𝑏𝑎𝑠𝑒 𝑏 𝑠𝑖𝑛2 𝜃 = 1 − 𝑐𝑜𝑠2 𝜃; 𝑠𝑖𝑛𝜃 = 1 − 𝑐𝑜𝑠2 𝜃 𝑏𝑎𝑠𝑒 𝑏 4. 𝑐𝑜𝑡𝑒𝑛𝑔𝑒𝑛𝑡 (𝑐𝑜𝑡𝜃) = = 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑝 cos 2 𝜃 = 1 − sin2 𝜃 ; 𝑐𝑜𝑠𝜃 = 1 − sin2 𝜃 5. 𝑠𝑒𝑐𝑒𝑛𝑡 (𝑠𝑒𝑐𝜃) = ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 = ℎ 2. 𝒔𝒆𝒄𝟐 𝜽 − 𝒕𝒂𝒏𝟐 𝜽 = 𝟏 𝑏𝑎𝑠𝑒 𝑏 𝑠𝑒𝑐 2 𝜃 = 1 + 𝑡𝑎𝑛2 𝜃; 𝑠𝑒𝑐𝜃 = 1 + 𝑡𝑎𝑛2 𝜃 ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 ℎ 6. 𝑐𝑜𝑠𝑒𝑐𝑒𝑛𝑡 (𝑐𝑜𝑠𝑒𝑐𝜃) = = 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑝 tan2 𝜃 = sec 2 𝜃 − 1 ; 𝑡𝑎𝑛𝜃 = sec 2 𝜃 − 1 3. 𝒄𝒐𝒔𝒆𝒄𝟐𝜽 − 𝒄𝒐𝒕𝟐 𝜽 = 𝟏 Pythagoras theorem 𝑐𝑜𝑠𝑒𝑐 2 𝜃 = 1 + 𝑐𝑜𝑡 2 𝜃; 𝑐𝑜𝑠𝑒𝑐𝜃 = 1 + 𝑐𝑜𝑡 2 𝜃 1. ℎ2 = 𝑝 2 + 𝑏 2 ; ℎ = 𝑝2 + 𝑏2 𝑐𝑜𝑡 2 𝜃 = 𝑐𝑜𝑠𝑒𝑐 2 𝜃 − 1; 𝑐𝑜𝑡𝜃 = 𝑐𝑜𝑠𝑒𝑐 2 𝜃 − 1 p h Complementary Angles 2. 𝑝2 = ℎ2 − 𝑏 2 ; 𝑝 = ℎ2 − 𝑏 2 90° 1. 𝑠𝑖𝑛 90° − 𝜃 = 𝑐𝑜𝑠𝜃 3. 𝑏 2 = ℎ2 − 𝑝 2 ; 𝑏 = ℎ2 − 𝑝 2 𝜃 2. 𝑐𝑜𝑠 90° − 𝜃 = 𝑠𝑖𝑛𝜃 b 3. 𝑡𝑎𝑛 90° − 𝜃 = 𝑐𝑜𝑡𝜃 Reciprocal Relations 4. 𝑐𝑜𝑡 90° − 𝜃 = 𝑡𝑎𝑛𝜃 1. 𝒔𝒊𝒏𝜽. 𝒄𝒐𝒔𝒆𝒄𝜽 = 𝟏 5. 𝑠𝑒𝑐 90° − 𝜃 = 𝑐𝑜𝑠𝑒𝑐𝜃 1 𝑠𝑖𝑛𝜃 = 6. 𝑐𝑜𝑠𝑒𝑐 90° − 𝜃 = 𝑠𝑒𝑐𝜃 𝑐𝑜𝑠𝑒𝑐𝜃 1 𝑐𝑜𝑠𝑒𝑐𝜃 = Quotient relation of T. Ratios 𝑠𝑖𝑛𝜃 2. 𝒕𝒂𝒏𝜽. 𝒄𝒐𝒕𝜽 = 𝟏 𝑠𝑖𝑛 𝜃 1. 𝑡𝑎𝑛𝜃 = 1 𝑐𝑜𝑠 𝜃 𝑡𝑎𝑛𝜃 = 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑡𝜃 2. 𝑐𝑜𝑡𝜃 = 1 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑡𝜃 = 𝑡𝑎𝑛𝜃 Table for T-Ratios of 0°, 30°, 45°, 60°, 90° 𝝅 𝝅 𝝅 𝝅 𝟎° 𝟑𝟎° 𝟒𝟓° 𝟔𝟎° 𝟗𝟎° 𝟔 𝟒 𝟑 𝟐 1 1 3 𝒔𝒊𝒏𝜽 0 2 2 1 2 3 1 1 𝒄𝒐𝒔𝜽 1 2 2 0 2 1 𝒕𝒂𝒏𝜽 0 3 1 3 ∞ 2 𝒄𝒐𝒔𝒆𝒄𝜽 ∞ 2 2 3 1 2 𝒔𝒆𝒄𝜽 1 3 2 2 ∞ 1 𝒄𝒐𝒕𝜽 ∞ 3 1 3 0 Trigonometric Property For 11th Class 𝐴 𝐴 𝐴 SET - I 2. 𝑐𝑜𝑠𝐴 = 𝑐𝑜𝑠 2 − 𝑠𝑖𝑛2 2 = 2𝑐𝑜𝑠 2 2 − 1 = 1 − 2 1. 𝑠𝑖𝑛 𝐴 + 𝐵 = 𝑠𝑖𝑛 𝐴. 𝐶𝑜𝑠𝐵 + 𝐶𝑜𝑠𝐴. 𝑆𝑖𝑛𝐵 𝐴 𝐴 1−𝑡𝑎 𝑛 2 2. 𝑠𝑖𝑛 𝐴 − 𝐵 = 𝑠𝑖𝑛 𝐴. 𝑐𝑜𝑠 𝐵 − 𝑐𝑜𝑠 𝐴. 𝑠𝑖𝑛 𝐵 2 𝑠𝑖𝑛2 2 = 2 𝐴 1+𝑡𝑎 𝑛 2 2 3. 𝑐𝑜𝑠 𝐴 + 𝐵 = 𝑐𝑜𝑠𝐴. 𝑐𝑜𝑠𝐵 − 𝑠𝑖𝑛 𝐴. 𝑠𝑖𝑛𝐵 𝐴 2 𝑡𝑎𝑛 2 4. 𝑐𝑜𝑠 𝐴 − 𝐵 = 𝑐𝑜𝑠 𝐴. 𝑐𝑜𝑠 𝐵 + 𝑠𝑖𝑛 𝐴. 𝑠𝑖𝑛 𝐵 3. 𝑡𝑎𝑛 𝐴 = 𝐴 1−𝑡𝑎 𝑛 2 2 𝑡𝑎𝑛 𝐴+𝑡𝑎𝑛𝐵 5. 𝑡𝑎𝑛 𝐴 + 𝐵 = SET - VI 1−𝑡𝑎𝑛𝐴.𝑡𝑎𝑛𝐵 𝑡𝑎𝑛 𝐴−𝑡𝑎𝑛 𝐵 6. 𝑡𝑎𝑛 𝐴 − 𝐵 = 1. 𝑠𝑖𝑛3𝐴 = 3𝑠𝑖𝑛 𝐴 − 4 𝑠𝑖𝑛3 𝐴 1+𝑡𝑎𝑛𝐴.𝑡𝑎𝑛 𝐵 3 𝑠𝑖𝑛 𝐴 − 𝑠𝑖𝑛 3𝐴 7. 𝑐𝑜𝑡 𝐴 + 𝐵 = 𝑐𝑜𝑡 𝐵.𝑐𝑜𝑡 𝐴−1 ∴ 𝑠𝑖𝑛3 𝐴 = 𝑐𝑜𝑡 𝐵+𝑐𝑜𝑡 𝐴 4 𝑐𝑜𝑡 𝐵.𝑐𝑜𝑡 𝐴+1 2. 𝑐𝑜𝑠 3𝐴 = 4 𝑐𝑜𝑠3 𝐴 − 3 𝑐𝑜𝑠 𝐴 8. 𝑐𝑜𝑡 𝐴 − 𝐵 = 𝑐𝑜𝑡 𝐵−𝑐𝑜𝑡 𝐴 3 𝑐𝑜𝑠 𝐴 + 𝑐𝑜𝑠 3𝐴 9. 𝑡𝑎𝑛 𝐴 + 𝐵 + 𝐶 = ∴ 𝑐𝑜𝑠 3 𝐴 = 4 𝑡𝑎𝑛𝐴 +𝑡𝑎𝑛𝐵 +𝑡𝑎𝑛 𝐶−𝑡𝑎𝑛𝐴.𝑡𝑎𝑛𝐵.𝑡𝑎𝑛𝐶 3 𝑡𝑎𝑛 𝐴−𝑡𝑎 𝑛 3 𝐴 3. 𝑡𝑎𝑛3𝐴 = 1−𝑡𝑎𝑛𝐴.𝑡𝑎𝑛𝐵 −𝑡𝑎𝑛𝐵.𝑡𝑎𝑛𝐶 −𝑡𝑎𝑛𝐶.𝑡𝑎𝑛𝐴 1−3 𝑡𝑎 𝑛 2 𝐴 𝑐𝑜 𝑡 3 𝐴−3𝑐𝑜𝑡 𝐴 SET - II 4. 𝑐𝑜𝑡3𝐴 = 3 𝑐𝑜 𝑡 2 𝐴−1 I. 𝑠𝑖𝑛 𝐴 + 𝐵 + 𝑠𝑖𝑛 𝐴 − 𝐵 = 2𝑠𝑖𝑛𝐴. 𝑐𝑜𝑠𝐵 SET - VII II. 𝑠𝑖𝑛 𝐴 + 𝐵 − 𝑠𝑖𝑛 𝐴 − 𝐵 = 2𝑐𝑜𝑠𝐴. 𝑠𝑖𝑛𝐵 1−𝑐𝑜𝑠 2𝐴 1−𝑐𝑜𝑠 2𝐴 1. 𝑠𝑖𝑛2 𝐴 = ; 𝑠𝑖𝑛𝐴 = III. 𝑐𝑜𝑠 𝐴 + 𝐵 + 𝑐𝑜𝑠 𝐴 − 𝐵 = 2𝑐𝑜𝑠𝐴. 𝑐𝑜𝑠𝐵 2 2 IV. 𝑐𝑜𝑠 𝐴 + 𝐵 − 𝑐𝑜𝑠 𝐴 − 𝐵 = −2𝑠𝑖𝑛𝐴. 𝑠𝑖𝑛𝐵 1+𝑐𝑜𝑠 2 𝐴 1 +𝑐𝑜𝑠 2𝐴 2. 𝑐𝑜𝑠2 𝐴 = ; 𝑐𝑜𝑠 𝐴 = 2 2 V. or 𝑐𝑜𝑠 𝐴 − 𝐵 − 𝑐𝑜𝑠 𝐴 + 𝐵 = 2𝑠𝑖𝑛𝐴. 𝑠𝑖𝑛𝐵 𝐴 1−𝑐𝑜𝑠 𝐴 𝐴 1−𝑐𝑜𝑠 𝐴 3. 𝑠𝑖𝑛2 = ; 𝑠𝑖𝑛 = 2 2 2 2 SET - III 𝐴 1 +𝑐𝑜𝑠 𝐴 𝐴 1+𝑐𝑜𝑠 𝐴 𝐶+𝐷 𝐶−𝐷 4. 𝑐𝑜𝑠2 = ; 𝑐𝑜𝑠 = I. 𝑠𝑖𝑛𝐶 + 𝑠𝑖𝑛𝐷 = 2 𝑠𝑖𝑛. 𝑐𝑜𝑠 2 2 2 2 2 2 𝐶+𝐷 𝐶−𝐷 1−𝑐𝑜𝑠 2𝐴 1−𝑐𝑜𝑠 2𝐴 II. 𝑠𝑖𝑛𝐶 − 𝑠𝑖𝑛𝐷 = 2𝑐𝑜𝑠 2. 𝑠𝑖𝑛 2 5. 𝑡𝑎𝑛2 𝐴 = ; 𝑡𝑎𝑛 𝐴 = 1+𝑐𝑜𝑠 2𝐴 1+𝑐𝑜𝑠 2𝐴 𝐶+𝐷 𝐶−𝐷 III. 𝑐𝑜𝑠 𝐶 + 𝑐𝑜𝑠 𝐷 = 2 𝑐𝑜𝑠. 𝑐𝑜𝑠 2 2 2 6. 1 + 𝑠𝑖𝑛 2𝑥 = 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥 𝐶+𝐷 𝐶−𝐷 2 IV. 𝑐𝑜𝑠 𝐶 − 𝑐𝑜𝑠 𝐷 = −2 𝑠𝑖𝑛. 𝑠𝑖𝑛 7. 1 − 𝑠𝑖𝑛 2𝑥 = 𝑐𝑜𝑠 𝑥 − 𝑠𝑖𝑛 𝑥 2 2 𝑥 𝑥 2 𝐶+𝐷 𝐷−𝐶 8. 1 + 𝑠𝑖𝑛 𝑥 = 𝑐𝑜𝑠 + 𝑠𝑖𝑛 or, 2 𝑠𝑖𝑛. 𝑠𝑖𝑛. 2 2 2 2 𝑥 𝑥 2 SET - IV 9. 1 − 𝑠𝑖𝑛 𝑥 = 𝑐𝑜𝑠 − 𝑠𝑖𝑛 2 2 2 𝑡𝑎𝑛 𝐴 I. 𝑠𝑖𝑛2𝐴 = 2 𝑠𝑖𝑛 𝐴. 𝑐𝑜𝑠 𝐴 = 1+𝑡𝑎𝑛 𝑥 𝜋 1+𝑡𝑎 𝑛 2 𝐴 10. = 𝑡𝑎𝑛 +𝑥 1−𝑡𝑎𝑛 𝑥 4 II. 𝑐𝑜𝑠2𝐴 = 𝑐𝑜𝑠 2 𝐴 − 𝑠𝑖𝑛2 𝐴 = 2𝑐𝑜𝑠2 𝐴 − 1 = 1 − 1−𝑡𝑎𝑛 𝑥 𝜋 2𝑠𝑖𝑛2 𝐴 = 1−𝑡𝑎 𝑛 2 𝐴 11. = 𝑡𝑎𝑛 − 𝑥 1+𝑡𝑎 𝑛 2 𝐴 1+𝑡𝑎𝑛𝑥 4 2 𝑡𝑎𝑛 𝐴 𝑥 III. 𝑡𝑎𝑛 2𝐴 = 1−𝑡𝑎 𝑛 2 𝐴 1+𝑡𝑎𝑛 2 𝜋 𝑥 12. 𝑥 = 𝑡𝑎𝑛 +2 1−𝑡𝑎𝑛 2 4 𝑐𝑜 𝑡 2 𝐴−1 IV. 𝑐𝑜𝑡 2𝐴 = 𝑥 𝑐𝑜𝑡 2𝐴 1−𝑡𝑎𝑛 2 𝜋 𝑥 SET - V 13. 𝑥 = 𝑡𝑎𝑛 −2 1+𝑡𝑎𝑛 2 4 𝐴 𝐴 𝐴 2 𝑡𝑎𝑛 2 1. 𝑠𝑖𝑛𝐴 = 2𝑠𝑖𝑛. 𝑐𝑜𝑠 = 𝐴 2 2 1 +𝑡𝑎 𝑛 2 2