Integral Calculus PDF
Document Details
Uploaded by CleverCobalt7359
Islamic University of Technology
Tags
Summary
This document provides an overview of integral calculus, including indefinite integral, methods of integration such as substitution, parts, and partial fractions, alongside example problems and formulas for common integration processes. Formulas and worked examples are included.
Full Transcript
Integral Calculus Indefinite Integral Def: 1. Integration is the inverse of differentiation 2. Integration is summation Methods of Integration 1. Integration by substitution 2. Integration by parts 3. Integration by partial fraction 4. Integ...
Integral Calculus Indefinite Integral Def: 1. Integration is the inverse of differentiation 2. Integration is summation Methods of Integration 1. Integration by substitution 2. Integration by parts 3. Integration by partial fraction 4. Integration by successive reduction Integration is the inverse of differentiation dx7 = 7x 6 7 x dx = x 6 7 dx d ( x 7 + c) = 7 x6 7 x dx = x +c 6 7 dx S=Summation FORMULA 1. 2 dx 2 = 1 tan −1 x +c, x=atan , acot x +a a a 2. 2 dx 2 = 1 ln x − a +c, partial fraction x −a 2a x + a 3. 2 dx 2 = 1 ln a + x +c , partial fraction a −x 2a a − x Type 2 dx ax + bx + c Example 1.1: Workout 2 dx 2 x + 3x + 1 dx 2x dx = 1 dx =1 dx + 3x + 1 2 = 3 1 9 3 1 3 1 2 2 2( x 2 + x + ) ( x + )2 + − (x + ) 2 − ( ) 2 2 2 4 2 16 4 4 3 1 x+ − = 1 ln 34 14 + c = ln 4 x + 2 + c 1 2. x+ + 4x + 4 2 4 4 px + q Type dx ax + bx + c 2 Example 1.2: Workout 23x + 4 dx 2 x + 3x + 1 Differentiation of deno. 2x + 3x + 1 is 4x+3 2 3 9 (4 x + 3) + 4 − 3x + 4 2 x 2 + 3x + 1dx = 2 x 2 + 3x + 1 dx 4 4 = 3 24 x + 3 dx + 7 2 dx 4 2 x + 3x + 1 4 2 x + 3x + 1 = 3 dz + 7 2 dx = 3 lnz+ 7 2 dx +C 4 z 4 2 x + 3x + 1 4 4 2 x + 3x + 1 FORMULA dx 4. =ln(x+ x2 + a2 )+c x=atan , acot x +a 2 2 dx 5. =ln(x+ x2 − a2 )+c x=asec , acosec x −a 2 2 2 dx 6. = sin −1 x +c x=asin , acos a2 − x2 a dx x +a 2 2 x=atan dx= a sec 2 d a sec2 d a 2 tan2 + a 2 = sec d =ln(sec +tan )+ c1 x2 x2 + a2 sec = 1 + tan = 1 + 2 = 2 2 a a2 x2 + a2 sec = a x2 + a2 x = ln( + )+ c1 a a x2 + a2 + x =ln( )+ c1 ==ln( x 2 + a 2 + x )-lna+ c1 ==ln( x + x 2 + a 2 )+c a dx Type ax 2 + bx + c dx Example 1.3: Workout 2 x + 3x + 1 2 dx dx 1 dx 2 x 2 + 3x + 1 = 3 1 = 2 3 1 9 2( x 2 + x + ) ( x + )2 + − 2 2 4 2 16 1 dx = = 1 ln x + 3 + ( x + 3 )2 − ( 1 )2 +c 2 3 1 2 4 4 4 (x + ) 2 − ( ) 2 4 4 dx Type put ax+b= z 2 (ax + b)(cx + d ) dx Example 1.4: Workout 3x-4= z 2 3dx=2zdz (2 x − 3)(3x − 4) 1 2 2 2z 2 + 8 − 9 2z 2 − 1 x = ( z 2 + 4) 2 x − 3 = ( z + 4) − 3 = = 3 3 3 3 3 dx = =2 3 zdz 2 dz 6 = (2 x − 3)(3x − 4) 3 (2 z − 1) z 2 2 1 2 z − 2 2 2 2 1 = ln( z + z 2 − +c 6 2 dx Example 1.5: Workout 6 + 11x − 10 x 2 dx 1 dx 6 + 11x − 10 x 2 = 10 3 11 + x − x2 5 10 1 dx = 10 3 11 121 − (x − )2 + 5 20 400 11 x− = 1 dx = 1 sin −1 19 20 +c= 1 sin −1 20 x − 11 +c 10 19 2 11 2 10 10 19 − (x − ) 20 20 20 px + q Type dx ax 2 + bx + c 3x + 4 Example 1.6: Workout dx 2 x 2 + 3x + 1 Differentiation of 2 x 2 + 3x + 1 is 4x+3 3 9 (4 x + 3) + 4 − 3x + 4 2 x 2 + 3x + 1dx = 4 2 x 2 + 3x + 1 4 dx = 3 42x + 3 dx + 7 dx 4 2 x + 3x + 1 4 2 x + 3x + 1 2 3 dz +7 dx =3 z+ 7 dx +c =…… 4 z 4 2 x 2 + 3x + 1 2 4 2 x 2 + 3x + 1 4 ax + b Type dx cx + d 2x + 4 Example 1.7: Workout dx 3x + 3 2x + 4 2x + 4 2x + 4 dx = dx = dx =……. 3x + 3 (3x + 3)(2 x + 4) (6 x 2 + 18 x + 12) dx Type put cx + d = z 2 (ax + b) cx + d Example 1.8: Workout dx (1 − x) x dx (1 − x) x x= z 2 dx=2zdz = ln 1 + z +c= ln 1 + x 2 +c 2 2 zdz 2dz = = (1 − z 2 ) z 1− z2 1− z 1− x dx 1 Type put ax + b = (ax + b) px + qx + r2 z dx Example 1.9: Workout (1 + x) 1+ x − x2 dx (1 + x) 1+x = 1 , dx = − 12 dz x= 1 −1 1+ x − x 2 z z z 3z − z 2 − 1 2 1 21 1 + x − x = 1 + − 1 - − 1 =1 1 2 3 1 - 2 + −1= − 2 −1 = z z z z z z z z2 1 −dz 2 dz dx = z =− (same as ) 1 3z − z 2 − 1 3z − z − 1 2 6 + 11x − 10 x 2 z z2 dz dz =− =− − 1 + 3z − z 2 3 9 −1 − (z − )2 + 2 4 5 dz =− 2 =…….. 5 3 − (z − )2 2 2 1 x 2 dx Example 1.10 : 1 x = z L C M of the deno min ator of the fractional power 1+ x 3 x = z , dx = 6 z dz 6 5 3 5 8 = z 6 z 2dz =6 z2 dz 1+ z z +1 =6 z ( z + 1) − z ( z + 1) 2+ z ( z + 1) − ( z + 1) + 1 dz 6 2 4 2 2 2 2 z +1 =6 ( z 6 − z 4 + z 2 − 1)dz +6 21 dz z +1 7 5 3 1 =6( z − z + z -z)+ 6 tan −1 z +c z = x 6 7 5 3 x dx Example 1.11: 3 do yourself 1+ x 4 Integration by parts du FORMULA uvdx = u vdx − dx vdx dx d(uw)=udw+wdu uw = udw + wdu dx = x uw= u dwdx + w du dx let dw =v w = vdx dx dx dx u vdx = uvdx + du vdx dx dx du uvdx = u vdx − dx vdx dx Example 1.12. xe x dx = x e x dx − dx e x dx dx = xe x − e x dx = xe x − e x + c dx Example 1.13. x 2 e x dx = x 2 e x dx − (2 x e x dx )dx = x 2 e x − 2[ xe x − e x dx ] = x2e x − 2 xex + 2ex +c=( x2 − 2 x + 2)e x +c 6 x e dx = ( x3 − 3 x2 + 6 x − 6 ) e x +c 3 x ln xdx sin cos −1 −1 xdx xdx 1 ln x1dx = ln x.x − x xdx = xlnx-x+c LIATE L=Logarithm I=Inverse A=Algebraic T=Trigonometric E=Exponential Example 1.14: Workout x sin xdx x sin xdx , u=x v=sinx x sin xdx u=sin x v=x −1 −1 e sin xdx u= e or sin x or, v=sinx or x x ex Example 1.15 Workout e ax sin bxdx , e ax cos bxdx I= e ax cos bxdx = e ax sin bx − ae ax sin bx dx b b ax e sin bx a = b − b e ax sin bxdx = e sin bx − a e ax − cos bx − ae ax − cos bx dx ax b b b b e ax sin bx a ax a2 = − 2 e cos bx − 2 e ax cos bxdx b b b ax e sin bx a ax a2 = − 2 e cos bx − 2 I b b b a2 ae sin bx + be cos bx ax ax 1 + 2 I= b b2 a2 + b2 ae ax sin bx + be ax cos bx 2 I= b b2 ae ax sin bx + be ax cos bx I= +c a2 + b2 7 FORMULA x x2 + a2 a2 7. x 2 + a 2 dx = + ln(x+ x2 + a2 ) +c x=atan , acot 2 2 x x2 − a2 a2 8. x − a dx = 2 2 − ln(x+ x 2 − a 2 )x+c x=asec , acosec 2 2 x a −x 2 2 a2 x 9. a − x dx = 2 2 − sin −1 +c x=asin , acos 2 2 a The results can be obtained by two methods. Integration by substitution and Integration by parts I= x 2 + a 2 1 dx = x 2 + a 2. x - 1 22 x 2. x dx 2 x +a x2 =x x2 + a2 - dx x2 + a2 x2 + a2 − a2 =x x2 + a2 - dx x2 + a2 1 =x x2 + a2 - x 2 + a 2 dx + a 2 x2 + a2 dx 1 2I= x x2 + a2 + a2 dx x2 + a2 x2 + a2 2 I= x + a ln(x+ x2 + a2 )+c 2 2 Type ax 2 + bx + c dx Example 1.16: Workout 2 x 2 + 3x + 1 dx 3 1 3 1 9 2 x 2 + 3x + 1 dx = 2( x 2 + x + )dx = 2 ( x + ) 2 + − dx 2 2 4 2 16 3 1 = 2 ( x + ) 2 − ( ) 2 dx 4 4 3 3 2 1 2 1 x + (x + ) − ( ) 1 2[ 4 = 4 4 + ln x + 3 + 4 3 ( x + ) 2 − ( ) 2 ]+c 2 2 4 4 4 8 Type ( px + q) ax 2 + bx + c dx Example 1.17: Workout (3x + 4) 2 x 2 + 3 x + 1 dx Differentiation of 2x2 + 3x + 1 is 4x+3 3 9 (3x + 4) 2 x 2 + 3 x + 1 dx = (4 x + 3) + 4 − 2 x 2 + 3x + 1 dx 4 4 = 3 (4 x + 3) 2 x 2 + 3x + 1 dx + 7 2 x 2 + 3x + 1 dx 4 4 =3 z dz + 7 2 x 2 + 3x + 1 dx 4 4 =1 z z +7 2 x 2 + 3x + 1 dx 2 4 = …….. Formula e (af ( x) + f ( x))dx = e ax f ( x) ax e (af ( x) + f ( x))dx ax = a e ax f ( x)dx + e ax f ( x))dx = a f ( x)e ax dx + e ax f ( x))dx e ax e ax = a[ f ( x) − f ( x) dx] + e ax f ( x))dx a a = e f ( x) − e f ( x)dx + e ax f ( x))dx ax ax = e ax f (x) For a=1 e ( f ( x) + f ( x))dx = e x x f ( x) Example 1.18: Workout e x x + 12 dx 2 ( x + 1) x2 +1 x ( x − 1) + 2 2 e = ( x + 1)2 dx x dx e ( x + 1) 2 2 = ex x − 1 + 2 dx = e x ( f ( x) + f ( x))dx = e x f ( x) = e x x −1 +c x +1 ( x + 1) x +1 9 x −1 ( x + 1)1 − ( x − 1)1 2 f ( x) = then f ( x) = = x +1 ( x + 1) 2 ( x + 1) 2 dx Type a + b sin x + c cos x Examples dx , dx , dx dx 2 sin x + 3 cos x , 6 + 3 sin x + 4 cos x 5 + 4 sin x 3 + 5 cos x dx Example 1.19: Workout 6 + 3 sin x + 4 cos x dx 6 + 3 sin x + 4 cos x sinx=2sin x cos x cosx=cos 2 x -sin 2 x 2 2 2 2 dx = x x x x 6 + 3.2 sin cos + 4(cos 2 − sin 2 ) 2 2 2 2 2 x sec dx x 1 x = x 2 x x z = tan dz = sec 2 dx 2 2 2 6(1 + tan 2 ) + 6 tan + 4(1 − tan 2 ) 2 2 2 2dz = 2dz = 2 = 2 dz = dz 6(1 + z ) + 6 z + 4(1 − z ) 2 2 2 z + 6 z + 10 z + 3z + 5 3 9 (z + )2 + 5 − 2 4 3 z+ dz 2 = 2 = tan −1 2 +c 3 11 11 11 (z + ) 2 + 2 2 2 Type a sin x + b cos x + c dx d sin x + e cos x + f 2 sin x + 3 cos x Examples sin x dx , cos x sin x + cos x dx , dx , sin x + cos x 4 sin x + cos x 2 sin x + 3 cos x + 5 sin x + 2 cos x + 6 dx Example 1.20: Workout 3 sin x + 14 cos x + 6 dx 4 sin x + 5 cos x + 3 3 sin x + 14 cos x + 6 4 sin x + 5 cos x + 3 dx 10 Nu. =l.Deno.+m. Diff. Coeff.of deno. +n 3 sin x + 14 cos x + 6 = l( 4 sin x + 5 cos x + 3 ).+m(4cosx-5sinx)+n =(4l-5m)sinx+(5l+4m)cosx +(3l+n) 4l-5m=3 20l-25m=15 m=1 l=2 n=0 5l+4m=14 20l+16m=56 3l+n=6 3 sin x + 14 cos x + 6 = 2( 4 sin x + 5 cos x + 3 ).+(4cosx-5sinx)+0 3 sin x + 14 cos x + 6 4sinx + 5cosx + 3 4 cos x − 5 sin x 4 sin x + 5 cos x + 3 dx = 2 dx + 4 sin x + 5 cos x + 3 dx 4 sin x + 5 cos x + 3 =2x +ln( 4 sin x + 5 cos x + 3 ) +c Integration by partial fraction dx Example 1.21: Workout ( x − 1)( x − 2) dx ( x − 1)( x − 2) 1 = A + B ( x − 1)( x − 2) ( x − 1) ( x − 2) 1=A(x-2)+B(x-1) Putting x=1 A=-1 x=2 B=1 1 =− 1 + 1 ( x − 1)( x − 2) ( x − 1) ( x − 2) Alternative method We can do the partial fraction easily without writing the constants A and B 1 1 1 = + ( x − 1)( x − 2) ( x − 1)(1 − 2) (2 − 1)( x − 2) =− 1 + 1 ( x − 1) ( x − 2) dx dx dx x−2 ( x − 1)( x − 2) = (x − 2) - (x − 1) =ln(x-2)-ln(x-1)+c= ln x − 1 +c 11 dx Example 1.22: Workout ( x − a)( x − b)( x − c) 1 1 1 1 = + + ( x − a)( x − b)( x − c) ( x − a)(a − b)(a − c) (b − a)( x − b)(b − c) (c − a)(c − b)( x − c) dx 1 dx 1 dx ( x − a)( x − b)( x − c) = (a − b)(a − c) x − a + (b − a)(b − c) x − b + 1 dx (c − a)(c − b) x − c 1 1 1 = ln( x − a) + ln( x − b) + ln( x − c) +c (a − b)(a − c) (b − a)(b − c) (c − a)(c − b) Example 1.23: Workout 2 2dx 2 2 ( x + a )( x + b ) 1 1 1 = 2 + ( x + a )( x + b ) ( x + a )(−a + b ) (−b + a )( x 2 + b 2 ) 2 2 2 2 2 2 2 2 2 dx 1 dx 1 dx ( x 2 + a 2 )( x 2 + b 2 ) = (b 2 − a 2 ) ( x 2 + a 2 ) + (a 2 − b 2 ) ( x 2 + b 2 ) = 2 1 2 1 tan −1 x + 2 1 2 1 tan −1 x +c (b − a ) a a (a − b ) b b xdx Example:1.24: z = x2 dz = 2xdx ( x + 4)( x 2 + 6) 2 =1 dz =…….. 2 ( z + 4)( z + 6) dx Type put ( x − a) = z( x − b) ( x − a ) ( x − b) n m dx Example 1.25: Workout ( x + 1) ( x + 2) 3 2 put ( x + 1) = z( x + 2) x(1 − z) = 2 z − 1 12 2z − 1 x= 1− z (1 − z )2 − (2 z − 1)(−1) 1 dx = dz = dz (1 − z ) 2 (1 − z ) 2 2z − 1 1 x+2= +2= 1− z 1− z 1 1 dz dz (1 − z ) 2 (1 − z ) 2 = (1 − z2) 3 dx dz ( x + 1) 2 ( x + 2) 3 = z 2 ( x + 2) 2 ( x + 2) 3 = 1 z z2 (1 − z ) 5 1 − 3z + 3z 2 − z 3 1 1 = 2 dz = 2 dz -3 dz +3 dz - zdz z z z =- 1 -3lnz+3z- z +c, z = x + 1 2 z 2 x+2 dx Example 1.26: Workout cos x(5 + 3 cos x) 1 1 3 1 1 = − [partial fraction of ] cos x(5 + 3 cos x) 5 cos x 5 5 + 3 cos x z (5 + 3z ) dx 1 3 1 cos x(5 + 3 cos x) = [ 5 cos x − 5 5 + 3 cos x ]dx = 1 sec xdx − 3 1 dx 5 5 5 + 3 cos x 1 3 1 = ln(sec x + tan x) - same as type dx 5 5 a + b sin x + c cos x dx Example 1.27: Workout sin x(3 + 2 cos x) dx sin xdx sin xdx sin x(3 + 2 cos x) = sin 2 x(3 + 2 cos x) = (1 + cos x)(1 − cos x)(3 + 2 cos x) dz =− =….. (1 + z )(1 − z )(3 + 2 z ) 13 Example 1.28: Workout sin x cos x sin x + cos x ( tan x + cot x ) dx= ( + )dx = dx cos x sin x sin x cos x sin x + cos x = 2 dx let z=sinx-cosx, dz=(cosx+sinx)dx 1 − (sin x − cos x) 2 dz = 2 = 2 sin −1 z + c = 2 sin −1 (sin x − cos x) + c 1− z 2 Type sin m x cos n xdx i) m or n or both odd ii) m and n is even iii) m+n is an even negative integer Examples i) sin 2 x cos 5 xdx , sin 5 x cos 4 xdx , sin 5 x cos 3 xdx , sin 5 xdx , cos 3 xdx ii) sin 4 x cos 2 xdx , sin 4 x , cos 4 xdx 3 3 2 iii) sin 5 x dx , sin 7 x dx cos x cos 2 x Example 1.29: Workout sin 2 x cos 5 xdx sin x cos xdx = sin x cos x cos xdx = sin x(1 − sin x) cos xdx =……. 2 5 2 4 2 2 2 Example 1.30: Workout sin 4 x cos 2 xdx sin x cos xdx = sin x sin x cos xdx = sin x(sin x cos x) dx 4 2 2 2 2 2 2 = sin 2 x( 1 2 sin x cos x) 2 dx = 1 sin 2 x sin 2 2 xdx = 1 (1 − cos 2 x)(1 − cos 4 x)dx 2 4 16 1 16 = (1 − cos 2 x − cos 4 x − cos 2 x cos 4 x)dx 2cosAcosB=cos(A+B)+ cos(A-B) 1 1 = 16 (1 − cos 2 x − cos 4 x − (cos 6 x + cos 2 x))dx 2 =……. 14 Alternative method Example: Workout sin 4 x cos 2 xdx By De Moivre’s theorem (cos x + i sin x) n = cos nx + i sin nx ( cos x + i sin x)1 = cos x + i sin x (cos x + i sin x)2 = cos2 x + 2i sin x cos x − sin 2 x = cos 2 x + i sin 2 x (cos x + i sin x) n = cos nx + i sin nx Let z = cos x + i sin x 1 = z −1 = (cos x + i sin x) −1 = cos x − i sin x z z n = (cos x + i sin x)n = cos nx + i sin nx 1 n = z − n = (cos x + i sin x) − n = cos nx − i sin nx z 1 1 z+ = 2 cos x , z − = 2i sin x , z z 1 1 z n + n = 2 cos nx , z n − n = 2i sin nx z z 4 2 2 2 1 1 1 1 24 i 4 sin 4 x 22 cos2 x = z − z + = z − z 2 − 2 z z z z = z 2 − 2 + 12 z 4 − 2 + 14 z z = z 6 − 2 z 2 + 12 − 2 z 4 + 4 − 24 + z 2 − 22 + 16 z z z z = z 6 + 16 -2 z 4 + 14 - z 2 + 12 +4 z z z =2cos6x-2.2cos4x-2cos2x+4 1 sin x cos 2 xdx = (cos6x-2cos4x-cos2x+2)dx 4 64 sin do it 8 xdx 3 2 Example 1.31: Workout sin 7 x dx 3 m = ,n = − 7 m + n = −2 2 2 2 cos x 15 3 2 3 3 5 5 sin x 2 2 7 dx = tan x sec xdx = z dz = z 2 + c = tan 2 x + c 2 2 2 5 5 cos 2 x = sec1 x dx = (1 + tan 4 2 dx x) sec2 x 1 7 1 dx put tanx=z 2 2 2 sin x cos x 2 tan x tan x Integration by successive reduction Example 1.32: Find the reduction formula for I n = x n e ax dx hence find x 3 e ax dx I n = x n e ax dx ax e ax = xn e − nx n −1 dx a a ax = x n e − n x n−1e ax dx a a ax = x n e − n I n −1 a a ax n e n In = x − I n −1 a a I 3 = x e dx 3 ax e ax 3 I3 = x3 − I2 a a ax ax = x 3 e − 3 ( x 2 e − 2 I1 ) a a a a 3 ax 2 ax = x e − 3x e2 + 62 I 1 a a a 3 ax 3 x 2 e ax e ax 1 e ax =x e − + 6 ( x − I0 ) I 0 = e ax dx = a a2 a2 a a a 3 ax 2 ax ax ax = x e − 3x e2 + 6 xe3 − 6e4 + c a a a a 16 Example 1.33: Find the reduction formula for I n = tan n xdx hence find tan 6 xdx I n = tan n xdx = tan n−2 x tan 2 xdx = tan n−2 x(sec 2 x − 1)dx = tan n−2 x sec 2 xdx - tan n−2 xdx n −1 = tan x − I n−2 n −1 tan n −1 x In = − I n−2 n −1 I 6 = tan 6 xdx tan 5 x I6 = − I4 5 5 3 = tan x − tan x − I 2 5 3 tan 5 x tan 3 x = − + tan x − I 0 5 3 5 3 = tan x − tan x + tan x − x + c 5 3 4 Example 1.34: Find the reduction formula for I n = tan n xdx hence 0 4 find tan 4 xdx 0 tan n −1 x In = − I n−2 n −1 tan n −1 x 4 1 In = − I n−2 = − I n−2 n −1 0 n −1 1 1 1 2 I 4 = − I 2 = − (1 − I 0 ) = − 1 + = − 3 3 3 4 4 3 17 Example 1.35: Find the reduction formula for I n = sin n xdx hence find sin 4 xdx I n = sin n xdx = sin n−1 x sin xdx = sin n−1 x(− cos x) − (n − 1) sin n−2 x cos x(− cos x)dx = − sin n −1 x cos x + (n − 1) sin n − 2 x(1 − sin 2 x)dx = − sin n −1 x cos x + (n − 1) sin n − 2 xdx − (n − 1) sin n xdx = − sin n −1 x cos x + (n − 1) I n − 2 − (n − 1) I n I n + (n − 1) I n = − sin n −1 x cos x + (n − 1) I n − 2 nI n = − sin n −1 x cos x + (n − 1) I n − 2 sin n −1 x cos x n − 1 In = − + I n−2 n n Find I4 ……………… 2 Example 1.36: Find the reduction formula for I n = sin n xdx hence 0 2 find sin 4 xdx 0 sin n −1 x cos x 2 n − 1 n −1 I n = − + I n−2 = I n−2 n 0 n n 3 31 3 1 3 2 2 I4 = I2 = I0 = = I 0 = sin 0 xdx = dx = 4 42 4 2 2 16 0 0 2 Example 1.37: Find the reduction formula for I n = e ax cos n xdx n I n = e ax cos xdx cosn xeax e ax = − n cosn −1 x(− sin x) dx a a 18 cosn xeax n = + (cosn −1 x sin x)e ax dx a a n ax ax ax = cos xe + n cosn −1 x sin x e − [(n − 1) cosn − 2 x(− sin x) sin x + cosn −1 x cos x] e dx a a a a n ax n −1 ax = cos xe + n cos x2sin xe − n2 eax [(n − 1) cosn − 2 x(cos2 x − 1) + cosn x dx a a a xeax n cosn −1 x sin xeax n n = cos + 2 − 2 e ax [(n − 1) cosn x − (n − 1) cosn − 2 x + cosn x dx a a a n ax n −1 ax = cos xe + n cos x2sin xe − n2 eax [(n cosn x − cosn x − (n − 1) cosn − 2 x + cosn x dx a a a ax cosn −1 x{a cos x + n sin x} n n e ax cosn xdx − (n − 1) e ax cosn − 2 xdx =e − 2 a2 a cosn −1 x{a cos x + n sin x} n ax =e − 2 nI n − (n − 1) I n − 2 a2 a n −1 e cos x{a cos x + n sin x} n 2 ax n(n − 1) = 2 − 2 In + In−2 a a a2 n2 e ax cosn −1 x{a cos x + n sin x} n(n − 1) 1 + 2 I n = + I n−2 a a2 a2 e ax cos n −1 x{a cos x + n sin x} n(n − 1) In = + 2 I n−2 n2 + a2 n + a2 n Example 1.38: Find the reduction formula for I m ,n = x m (ln x) dx n x m+1 n −1 1 x m +1 = x (ln x) dx = (ln x) m +1 I m,n m n − n(ln x) dx x m +1 x m +1 n m +1 m +1 = (ln x) n − x m (ln x) n −1 dx x m +1 n = (ln x) n − I m,n −1 m +1 m +1 x m+1 n I m,n = (ln x) n − I m,n −1 m +1 m +1 19 Example 1.39: Find the reduction formula for I m ,n = cos m x cos nx dx hence find cos 3 x cos 3x dx I m ,n = cos m x cos nx dx sin nx sin nx = cos m x − m cos m −1 x(− sin x) dx n n sin nx m = cos m x + cos m−1 x sin nx sin x dx n n cos(nx-x)=cosnx cosx+sinnx sinx sinnx sinx =cos(n-1)x-cosnxcosx sin nx m = cos m x + cos m −1 x[cos(n - 1)x - cosnxcosx]dx n n sin nx m m = cos m x + cos m−1 xcos(n - 1)x - cos m xcosnx dx n n n sin nx m m = cos m x + I m −1,n −1 − I m,n n n n m m cos x sin nx m 1 + I m , n = + I m−1,n −1 n n n m+n cos m x sin nx m I m,n = + I m−1,n −1 n n n cos m x sin nx m I m,n = + I m −1,n −1 m+n m+n cos 3 x sin 3x 3 cos3 x sin 3x 3 cos 2 x sin 2 x 2 I 3, 3 = + I 2, 2 = + + I 1,1 6 6 6 6 4 4 cos 3 x sin 3x cos 2 x sin 2 x 1 = + + I 1,1 6 8 4 cos x sin 3x cos x sin 2 x 1 cos x sin x 1 3 2 = + + + I 0, 0 6 8 4 2 2 cos3 x sin 3x cos2 x sin 2 x cos x sin x 1 = + + + x +c 6 8 8 8 I 0, 0 = cos x cos 0 x dx = dx = x 0 20