FE Engineering Mathematics-II Past Paper PDF May/June 2023
Document Details
Uploaded by Deleted User
2023
unknown
Tags
Summary
This is a past paper for FE Engineering Mathematics-II, for the May/June 2023 exam period. The paper includes multiple-choice questions and other mathematical problems.
Full Transcript
Total No. of Questions : 9] SEAT No. : 8 23 P3924 [Total No. of Pages : 4...
Total No. of Questions : 9] SEAT No. : 8 23 P3924 [Total No. of Pages : 4 ic- -4009 tat F.E. 7s ENGINEERING MATHEMATICS-II 3:3 (2019 Pattern) (Semester - I/II) (107008) 02 91 0:3 0 Time : 2½ Hours] [Max. Marks : 70 31 3/0 13 Instructions to the candidates: 1) Q. No.1 is compulsory. 0 8/2 2) Solve Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9..23 GP 3) Neat diagrams must be drawn wherver necessary. 4) Figures to the right indicate full marks. E 80 5) Use of electronic pocket calculator is allowed. 8 C 23 6) Assume suitable data, if necessary. ic- 16 Q1) Write the correct option for the following multiple choice questions tat 8.2 7s 2 sin dt 4.24 3:3 a) 91 0 49 0:3 30 3 3 31 i) ii) 16 8 01 02 8/2 GP 3 3 iii) iv) 3/0 16 8 CE 80 8 23.23 b) The equation of the tangent to the curve y (1 x 2 ) x at origin, if exist is ic- 16 tat 8.2 7s i) X=0 ii) Y=0.24 3:3 91 49 x 1, x 1 yx 0:3 iii) iv) 30 31 01 02 1 1 1 1 2 1 y 2 dxdy 8/2 GP c) The value of double integration 0 0 1 x 3/0 CE 80 2 i) ii).23 2 2 16 2 8.2 iii) iv) 4 8.24 49 P.T.O. Other PYQs => www.studymedia.in/fe/pyqs d) Centre (C) of sphere x 2 y 2 z 2 2 z 4 is 8 23 i) C (0,0,0) ii) C (0,0,1) ic- tat iii) C (0,1,0) iv) C (1,0,0) 7s 3:3 02 91 e) The curve r 2a sin is symmetrical about 0:3 0 31 i) Pole 3/0 13 ii) 0 0 8/2 iii) iv) .23 GP 2 4 E 80 8 C 23 ic- f) dxdydz represents 16 tat V 8.2 7s i) Area ii) Mass.24 3:3 91 iii) Mean Value iv) Volume 49 0:3 30 31 01 2 02 n 2 4 n2 8/2 Q2) a) If In = sec d , then prove that In = In-2 n GP n 1 n 1 3/0 0 CE 80 5 8 x 2 5 x dx 3 2 23 b) Evaluate.23 ic- 2 16 tat e x e ax 1 a2 1 Using DUIS, prove that dx log ,a 0 8.2 7s c) x sec x 2 2 .24 0 3:3 91 49 0:3 OR 30 31 Q3) a) Evaluate 01 02 8/2 2 GP sin d 2 i) cos10 3/0 0 2 2 CE 80 2 cos t.23 4 ii) dt 16 2 8.2.24 49 -4009 2 Other PYQs => www.studymedia.in/fe/pyqs 8 1 23 x log x 4 b) Evaluate : dx ic- 0 tat 1 d 1 d erfc (ax) 7s c) Prove that: erf (ax) x da a dx 3:3 02 91 0:3 Q4) a) Trace the curve x 2 y 2 a 2 ( y 2 x 2 ). 0 31 b) 3/0 13 Trace the curve r a (1 cos ). 0 c) Find the are length of Astroid x 2 3 y 2 3 a 2 3 8/2.23 GP OR E 80 8 C 23 Q5) a) Trace the curve x 3 y 3 3axy. ic- b) Trace the curve r a cos 2 16 tat Trace the curve x a (t sin t ), y a (1 cos t ). 8.2 c) 7s.24 3:3 91 Show that the plane x 2 y 2 z 7 touches the sphere x 2 y 2 z 2 49 Q6) a) 0:3 30 10 y 10 z 31 0. Also find the point of contact. 31 b) Find the equation of right circular cone whose vertex is at origin, whose 01 02 x y 8 8/2 GP axis is the line and which has a semi-vertical angle of 60°. 1 2 3 3/0 CE 80 8 c) Find the equation of right circular cylinder of radius 3 and axis is the line 23.23 x 1 y 2 z 3 . ic- 16 tat 2 1 2 8.2 7s OR.24 3:3 Q7) a) Show that the two spheres: x 2 y 2 z 2 25 and x 2 y 2 z 2 91 49 0:3 18 x 24 y 40 z 225 0 touches externally. Also find the point of 30 31 contact. 01 b) Find the equation of right circular cone whose vertex is at (0,0,10), axis 02 8/2 2 GP is the Z-axis and the semi-vertical angle is cos 1 3/0 5 CE 80 c) Find the equation of right circular cylinder of radius 6, whose axis.23 1 1 1 , ,. 16 passes through the origin and has direction cosines 3 3 3 8.2.24 49 -4009 3 Other PYQs => www.studymedia.in/fe/pyqs 8 23 Q8) a) Evaluate xy dx dy, where R is x 2 y, y 2 x. ic- R tat b) Find area of cardioide r a (1 cos ) using double integration. 7s c) Find the moment of inertia of one loop of the lemniscate 3:3 r 2 a 2 cos 2 about initial line. Givenl that density 2m 02 91 , m is a mass 0:3 a2 0 31 of the area. 3/0 13 0 OR 8/2.23 GP 5 2 x Q9) a) Change order of integration f ( x, y ) dxdy. E 80 8 0 2 x C 23 b) Find the volume bounded by the cone x 2 y 2 z 2 and paraboloid ic- 16 tat x2 y 2 z. 8.2 7s c) Find the x - co-ordinate of centre of gravity of one loop of r a cos 2 ,.24 3:3 a2 91 which is in the first quadrant, given that area of loop is A . 49 0:3 8 30 31 01 02 8/2 GP 3/0 CE 80 8 23.23 ic- 16 tat 8.2 7s.24 3:3 91 49 0:3 30 31 01 02 8/2 GP 3/0 CE 80.23 16 8.2.24 49 -4009 4 Other PYQs => www.studymedia.in/fe/pyqs