V06 Diffusion WS 23 PDF
Document Details
Uploaded by DauntlessLotus
RWTH Aachen University
Uwe Schnakenberg
Tags
Summary
These lecture notes cover various microfluidic concepts, including Brownian motion, diffusion, passive and active micromixers, and mixing in droplets. The document provides a deep understanding of the topic and is intended for a post-graduate level.
Full Transcript
V06 V06 Diffusion and Micromixer Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 1 Contents V06 Contents V06 6.1 Brownian Motion 6.2 Diffusion 6.2.1 1. Fick Law 6.2.2 2. Fick Law 6.2.3 Diffusion Profil...
V06 V06 Diffusion and Micromixer Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 1 Contents V06 Contents V06 6.1 Brownian Motion 6.2 Diffusion 6.2.1 1. Fick Law 6.2.2 2. Fick Law 6.2.3 Diffusion Profile of a Concentration Front 6.2.4 Diffusivity / Diffusion Coefficient 6.3 Passive Diffusive Micromixers 6.3.1 Concept 6.3.2 Layering Techniques 6.3.3 Mixing in Droplets 6.4 Micromixers at High Reynolds Numbers Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 2 Learning Targets V06 V06 Learning Targets V06 Diffusion effects in laminar flow Methods for reducing diffusion lengths at different Reynolds number regimes Diffusive mixing in droplets Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 3 V06 6.1 Brownian Motion Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 4 V06 5 www.nndb.com 6.1 Brownian Motion Brownian Motion (1827)* http://www.britannica.com Robert Brown (1773 - 1858) https://www.youtube.com/watch?v=6VdMp46ZIL8 Arbitrary non-directional jitter movement of suspended particles / molecules …. Resulting from kicks of single molecules of surrounding medium (gas, liquid) * First description by Jan Ingenhousz 1784 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Jan Ingenhousz (1730 - 1799) 6.1 Brownian Motion V06 6 www.emis.de Brownian Motion Thermal agitation Einstein 1905 https://upload.wikimedia.org/ Smoluchowski 1906 Langevin 1907 x Paul Langevin (1872 - 1946) k BT t 3 r Albert Einstein (1897 – 1955) cyfronet.krakow.pl Theoretical prediction by Brownian motion is the origin of diffusion x … Distance from origin kB...Boltzmann constant η … Viscosity of fluid T … Absolute temperature r … Radius of particle t … Time Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Marian Smóluchowski (1872 -1917) 6.1 Brownian Motion V06 Note k BT x t 3 r Boltzmann constant kB can easily be calculated by macroscopically determinable variables This allows direct experimental determination of and therefore other variables, e.g. Avogadro constant Size Number Mass of tiny particles / molecules Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 7 6.2 Diffusion V06 6.2 Diffusion Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 8 6.2 Diffusion V06 9 Diffusion Transport process Spontaneous spreading of particles / molecules etc. From regions of high concentration to regions of low concentration Driven by gradient of concentration (inhomogeneity) Process driven by entropy www.en.wikipedia.org Refers to the net migration owing to random thermal fluctuations → Entropy is increasing → Ends up in homogeneous Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 particle distribution 6.2 Diffusion V06 Diffusion in Microfluidics Is carried along with the fluid flow Moves with the fluid Does not affect the fluid flow Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 10 6.3.2 Layering Techniques 6.2 Diffusion V06 Transport Diffusion Advection Transport due to Transport due to concentration gradient bulk motion* of a fluid Convection Combination of diffusion and advection * Bulk flow is often the movement of fluid down a channel driven by a pressure gradient Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 11 6.2 Diffusion V06 12 Diffusion Macro world Micro world Low Reynolds numbers Mixing through inertial forces No turbulences and vortices Shaking Steering Laminar flow, no inertial forces Turbulences + Vortices Active mixing Mixing by diffusion !!! www.einslive.de Passive mixing Flow direction www.syrris.com/Flow-Basics.aspx Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.2.1 1. Fick‘s Law of Diffusion V06 13 1. Fick‘s Law c jx D x de.academic.ru Fick‘s Laws of Diffusion for one direction Gradient of concentration drives net mass flow No dependency of time Adolf Eugen Fick (1829 – 1901) Highest transport at highest gradient The net effect is a flux in the direction opposite to the local gradient System goes for homogeneity Fick’s law is a macroscopic representation of a summed effect of random motion of species owing to thermal fluctuations j … Particle flux density: amount of particles diffusing across a surface per unit area per time D.. Diffusion coefficient, diffusivity [m2/s] c … Particle concentration Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.2.2 2. Fick‘s Law of Diffusion V06 14 Combination of 1. Fick‘s Law with Conservation of Mass c j D x j … Particle flux density D.. Diffusion coefficient c … Particle concentration 2. Fick‘s Law j c t x Minus sign Concentration decreases when more particles flow out than in c 2c D 2 t x For one dimension c D 2 c t For three dimensions Temporal change of concentration in correlation to spatial variation of concentration. Description of non-static (dynamic) diffusion processes Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.2.3 Diffusion of a Concentration Front V06 Diffusion of a Concentration Front c 2c D 2 t x x0 In one direction x Initial conditions c c0 c( x 0, t 0) c0 c0 c( x 0, t 0) 0 Walls are placed at infinity Steady state - without flow - 1 c( x, t ) c0 1 erf 2 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 x 2 Dt 15 6.2.3 Diffusion of a Concentration Front V06 1 c( x, t ) c0 1 erf 2 x0 t=1s c0 t = 0.1 s D = 1∙10-11 m2/s t = 100 s t=∞ Steady state - without flow - * Error function erf ( x) 2 * t = 10 s c / c0 c cstart x 2 Dt x u e du 2 Distance from interface [µm] 0 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 16 6.2.3 Diffusion of a Concentration Front V06 17 In Presence of Steady-State Fluid Flow When the channels are shallow relative to their width (w >> h, slit-type channels) Diffusion is 1-dimensional Diffusion transverse to the flow direction, averaged over the depth, is described by the error function Due to flow, the distribution of particles varies with y/v = t (the time since the fluid entered the channel) B.J. Kirby: Micro- and Nanoscale Fluid Mechanics, ISBN 978-0-521-11903-0 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 6.2.4 Diffusivity / Diffusion Coefficient Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 18 6.2.5 Diffusivity / Diffusion Coefficient V06 19 Stokes-Einstein Equation (1905) Diffusion of a spherical particle In low viscous fluid Diffusion coefficient Diffusivity D www.nnbd.com Low Reynolds number Re kBT 6 r High diffusion for High temperatures Low viscous fluids George Gabriel Stokes (1819 – 1903) Small particles / molecules *derived by Einstein in his Ph.D thesis A. Einstein, A.: Annalen der Physik 322 (8) 549-560 (1905), doi:10.1002/andp.19053220806 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.2.5 Diffusivity / Diffusion Coefficient V06 Diffusivity / Diffusion Coefficient Particle Size Diffusion coefficient D* [µm2/s] [nm] Solved ion 0.1 2*103 Small protein 5 40 Virus 100 2 Bacterium 1000 0.2 Human Cell 10000 0.02 * in water at room temperature T.M. Squires et al.: Rev. Mod. Phys. 17 977-1026 (2005) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 20 6.2.5 Diffusivity / Diffusion Coefficient V06 Diffusion Coefficient Depends on Temperature kBT D 6 r https://www.youtube.com/watch?v=STLAJH7_zkY Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 21 V06 6.3 Passive Diffusive Micromixers 6.3.1 Concept Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 22 6.3.1 Concept of Passive Diffusive Micromixers Diffusion Time tD of Particle Time needed for a particle to diffuse the length lD Diffusion Length V06 lD2 tD 2D lD 2 D t Length over which diffusion has occurred Favorable for microfluidics Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 23 From slides 7 and 19 6.3.1 Concept of Passive Diffusive Micromixers V06 Y-mixer Fluid A Fluid B Mixing by Diffusion in Laminar Flow Is determined by device geometry lD is small in µF Only passive structures needed lD w 2 lD2 tD cadf 2D Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 lD lchannel w 24 6.3.1 Concept of Passive Diffusive Micromixers Mixing by Diffusion in Laminar Flow Diffusive mixing is easy in microfluidics → ID is small, defined by half of the channel width lD2 tD 2D ID Y.-K Suh et al.: Micromachines 1 82-111 (2010) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 25 6.3.1 Concept of Passive Diffusive Micromixers V06 How long must the channel be for complete diffusive mixing? Fluid A Time of residence tr for particle in channel Time of residence tr Fluid B lchannel vmean tr t D Diffusion time lD lchannel 2 D lchannel l vmean 2 D l min channel vmean 2 lD 2D Minimum channel length of channel for complete mixing Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 26 6.3.1 Concept of Passive Diffusive Micromixers V06 Example: Protein min lchannel vmean 2 lD 2D Diffusion coefficient D = 40 µm2/s Half channel width lD = 100 µm Mean flow velocity vmean = 100 µm/s min lchannel 1.25 cm t r t D 125 s Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 27 6.3.1 Concept of Passive Diffusive Micromixers 1 vmean lD lD 2 D Péclet number Pe 28 www.wikipedia.de l min channel V06 vmean lD D Jean Claude Eugène Péclet (1793 – 1857) Péclet number Dimensionless characteristic number Describes mass transport Relation of advection flow (particle transport in flow) and diffusive transport High Péclet number: Transport determined by advection Low Péclet number: Transport determined by diffusion Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.1 Concept of Passive Diffusive Micromixers Application V06 H-filter for Particle Separation Solute Influenced by Particle size kBT D 6 r l min channel 1 vmean 2 lD 2 D Particle shape Diffusion constant Viscosity Temperature Mean flow velocity S.J. Trietsch et al.: Chemometrics and Intelligent Laboratory Systems 108 (1) 64-75 (2011) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 29 6.3.1 Concept of Passive Diffusive Micromixers V06 Solute vmean Pe lD D H-filter works when Pe small for small particles High diffusion Pe high for large particles Low diffusion S.J. Trietsch et al.: Chemometrics and Intelligent Laboratory Systems 108 (1) 64-75 (2011) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 30 6.3.1 Concept of Passive Diffusive Micromixers V06 Fluid A min l kanal vmean 2 lD 2D 31 Fluid B Minimum channel length for complete diffusive mixing When the diffusivity D is too small the channel length will be too long to be integrated in a chip format How can the channel length be shortened? Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 lD lchannel V06 6.3.2 Layering Techniques Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 32 6.3.2 Layering Techniques V06 Shortening of Channel Length by Layering Technique lD Reduced diffusion length l*D l *D lD n Reduced minimum channel length l min channel vmean *2 vmean lD2 lD 2 2D 2D n Minimum channel length can be reduced by layering ! Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 33 6.3.2 Layering Techniques Passive Mixing by Interdigitated Lamella P. Löb et al.: Chem. Eng. J. 101 75-85 (2004) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 34 6.3.2 Layering Techniques Split-And-Recombine (SAR) S.W. Lee et al.: J. Micromech. Microeng. 16 1067-1072 (2006) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 35 6.3.2 Layering Techniques V06 36 Split-And-Recombine (SAR) Split N.-T. Nguyen et al.: J. Micromech. Microeng. 15 R1-R6 (2005) Shift Recombine http://www.youtube.com/watch?v=z9E5kwcMoHE Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.2 Layering Techniques V06 Split-And-Recombine (SAR) Re 3.89 vm 50 D.S. Kim et al.: Lab on a Chip 5 739-747 (2005) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 l min 37 6.3.2 Layering Techniques V06 Split-And-Recombine (SAR) A. El Hasni, …., U. Schnakenberg: Microfluidics and Nanofluidics 21 41 (9pp) (2017) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 38 6.3.2 Layering Techniques V06 39 F-Bar SAR Structures were Fabricated Using by Lamination of Dry Film SU-8 Resist Lamination of six layers SU-8 Glass S. Abada et al.: J Micromech. Microengineering, 27 (5), 055018 (2017) A. El Hasni, …, U. Schnakenberg: Microfluid Nanofluid 21 41 (2017) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.2 Layering Techniques V06 Dean Mixer Dean number 40 dh De Re r De low No vortices De high Fast flow in the middle will be pushed to the outer channel wall by centrifugal De >> 1 forces Appearance of Dean vortices A. Sundarsan: http://repository.tamu.edu/bitstream/handle/1969.1/4686/etd-tamu-2006C-CHEN-Sudarsan.pdf?sequence=1 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.2 Layering Techniques V06 41 Dean Mixer De 1 De 10 Low fluid velocities High fluid velocities Centrifugal forces not high enough Centrifugal forces transport fluid from to influence laminar flow channel’s inside to outside and visa versa A. Sundarsan: http://repository.tamu.edu/bitstream/handle/1969.1/4686/etd-tamu-2006C-CHEN-Sudarsan.pdf?sequence=1 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.2 Layering Techniques http://www.youtube.com/watch?v=LNeUqNVS5VE Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 42 6.3.2 Layering Techniques V06 43 Dean Mixer De Re dh r A. P. Sundarsan et al. : PNAS 103 (19) 7228-7233 (2006) dh …. Hydraulic diameter of channel R ….. Flow path radius of curvature Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.2 Layering Techniques V06 44 Staggered Herringbone Mixer (SHM) viskoser Fluss A. D. Stroock et al.: Science 295 647-651 (2002) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Re < 10 6.3.2 Layering Techniques A. D. Stroock et al.: Science 295 647-651 (2002) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 45 Re < 10 6.3.2 Layering Techniques V06 Staggered Herringbone Mixer (SHM) Asymmetry of rolls change periodically Efficiency depending on Asymmetry of grating structure Geometry of gratings Number of gratings per unit → determines the rotation angle ∆Φ A. D. Stroock et al.: Science 295 647-651 (2002) Re < 10 Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 46 6.3.2 Layering Techniques V06 47 Staggered Herringbone Mixer (SHM) Asymmetry of rolls change periodically Efficiency depending on Asymmetry of grating structure Geometry of gratings Number of gratings per unit → determines the rotation angle ∆Φ Unfortunately, this video is not available on youtube anymore Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 6.3.3 Mixing in Droplets Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 48 6.3.3 Mixing in Droplets V06 Mixing in Droplets (Introduction to Droplets → V08 Droplets) Water Droplet Oil H. Song et al.: Angew. Chem. Int. Ed. 42 (7) 767-772 (2003) M. R. Bringer et al.: Phil. Trans. R. Soc. Lond. A 362 1087-1104 (2004) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 49 6.3.3 Mixing in Droplets V06 50 Chaotic Advection in Droplet Fluid is in relative motion with regard to channel walls Walls induce vortices in droplets Straight Channel Geometry Symmetric vortices Droplet will be mixed symmetrically Curved Channel Geometry Different relative fluid velocities at top and bottom wall result in asymmetric vortices in the droplet when the radii of curvature are different M. R. Bringer et al.: Phil. Trans. R. Soc. Lond. A 362 1087-1104 (2004) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 6.3.3 Mixing in Droplets http://www.youtube.com/watch?v=E7e237QVQfo Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 51 6.3.3 Mixing in Droplets V06 52 In sharp turn Only one vortex occurs Reorientation of droplet In straight part Stretching and folding M. R. Bringer et al.: Phil. Trans. R. Soc. Lond. A 362 1087-1104 (2004) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 U vm 53 mm / s V06 6.4 Micromixers at High Reynolds Numbers Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 53 6.4 Micromixers at High Reynolds Numbers V06 Advection Transport due to bulk motion* of a fluid Transport along the streamlines in laminar flow Chaotic Advection Enforce turbulences and vortices by distinct channel geometries Designs of channel geometries depends on Re Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 54 6.4 Micromixers at High Reynolds Numbers V. Mengeaud et al: Anal. Chem. 74 4279-5286 (2002) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 55 Re > 100 6.4 Micromixers at High Reynolds Numbers V06 56 10 < Re < 100 N.-T. Nguyen et al.: J. Micromech. Microeng. 15 R1-R6 (2005) Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Conclusion Conclusion V06 V06 57 Diffusion is an important property in microfluidics Surface-to-volume ratio significantly higher than in macrofluidics Fast diffusive mixing possible Passive Diffusive Micromixers No external forces needed (no shaking or steering) Mixing time and channel length can be shortened by layering techniques Active Micromixers Need externally applied energy/forces Examples will be presented in next lectures Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V06 One Minute Paper 1. What was the most important topic you understood? 2. What was the topic you didn‘t catch? Lecture „Microfluidic Systemes- Bio-MEMS“ - Diffusion Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 58