FIS 0444 Mathematics 1 Unit 1 Exercises & Answers PDF

Summary

This document appears to be a set of exercises and answers related to secondary school mathematics, specifically covering topics like indices, surds, logarithms, and polynomials. The exercises cover problem solving and application.

Full Transcript

FIS 0444 Mathematics 1 Unit 1- Algebra Indices a m  a n = a m+ n (a m ) n = a mn = (a n ) m (ab) m = a m b m a am...

FIS 0444 Mathematics 1 Unit 1- Algebra Indices a m  a n = a m+ n (a m ) n = a mn = (a n ) m (ab) m = a m b m a am m am (a p a q ) m = a pm a qm   = m n = a m  a −n b b a m −m m ap  a pm a b  q  = qm   =  b  b b a Surds Theorem ( ) (b ) m m 1  1n  ( b) 1 m = b = b n n = n bn = b b =  b  = n m n n m m b n n   n ab = n a  n b n m a = mn a a na n = b nb tn a tm = n a m Logarithms Theorem a y = x, y = log a x loga xy = loga x + loga y log a x c = c log a x x loga 1 = 0 loga a = 1 loga = loga x − loga y y a loga x = x log b N 1 log a N = loga b = log b a logb a Polynomials P( x) = Q( x) D( x) + r ( x), where Q(x)= quotient; D(x)= divisor and r(x)= remainder. -1- FIS 0444 Mathematics 1 Unit 1- Algebra Exercise 1 g. 50 + 8 + 32 Determine whether each given real number is a 1. natural number, an integer, a rational number, or 9. Simplify the following. an irrational number. a. h. a. 999 5 a 6 3 1− a b. − 5 b. 10 i. 2 a+ b c. − 6 5 2 a− b 3 c. 2 d. 25 2+ 2 e. 3 d. 5 3+ 2 2. Solve each of the following equation. 2 e. 1+ 2 a. 3 = 27 x 3 −1 3 b. 10 x = 0.01 f. 3 3−4 c. (2 x ) 2 = 2 5 6 −2 3 d. 2 x−3 = 4 x+1 g. 2 1 1 − e. 2 x  2 x +1 = 5 −2 5+2 2 f. 2 −92 +8 = 0 2x x 10. Express with rational denominators: g. 32 x − 10  3 x + 9 = 0 a. 1 3+ 2− 5 4n + 2 5  25 n b. 1 3. Simplify 6 n −1 5 3 + 2 +1 4. Show that 5n + 2 − 5n +1 − 5n is divisible by 19 for all 5− 3 positive integer values of n. 11. If x = , find the value of 8 x − x 2. 5+ 3 5. Show that 4 m+1 + 4 m−1 − 4 m is divisible by 13 for 12. Without using a calculator, evaluate each of the all positive integers of m. following. a. lg1000 56 n  94 n  152 n b. 6. If 2n = k 8n , where k is a positive log 2 128 3 c. log5 0.2 integer, find the value of k. 13. Express each of the following as a single 25m  10m +1 logarithm. 7. Simplify. 2m −1  52 + 3m a. lg 24 – lg 6 – lg 2 b. 3 lg x – 2 lg ( xy) + lg y 8. Simplify c. 1 log2 25 + log2 3 − 2 log2 15 a. 18 + 8 2 b. 50 + 32 − 72 d. log a p 2 + 2 log a q − 2 c. ( 2 − 3) 2 10 d. (4 3 − 3 2 ) 2 x −1 14. Solve the equation 3 − 3 − 2x = 0. 3 e. 27  12 f. 32  15  24 15. If h 3 x −1 = k 1−2 y and h 2 x −2 = k 4 y −3 , show that -2- FIS 0444 Mathematics 1 Unit 1- Algebra 16xy − 8 y − 11x + 5 = 0. a. 3 log 2 + 2 log5 − log 20 b. 2 log a − logb − log c 16. Evaluate (log3 m) (logm 81). 1 17. Solve the following equations. c. log x + log y − 3 log z a. logx 8 = 1.5 2 b. d. 3 logc a − 2 logc b + 1 6 x +1 = 18 2 c. log3 ( x + 2) = log9 (6x + 4) 5. log c a Show that log bc a =. 1 + log c b Exercise 2 6. If x = log y z, y = log z x and z = logx y ,show that 1. Evaluate 1 xyz = 1. a. 50 b. 36 2 c. − 1 d. − 3 7. Given that log10 ( x − y + 1) = 0 and 2 4 49 81 1 −3 − 3 1 + log10 ( xy) = 0 ,show that x = y =. 1 1 2 10 e.   f.   2 4 1 1 8. 1 1 Show that log16 ( xy) = log4 x + log4 y. 1 1 9 82 2 2 2 g. 12  3 2 2 h. 1 2 2 9. Solve each of the following equations for x, giving 1 1 i. your answers correct to two decimal places. 27  3 4 4 a. 2 x−1 = 3 x +1 2. Rationalise the denominator for each of the b. 5 x − 2 = 2 x +3 following surds. c. 32 x −1 = 5 x 10 2 d. 61− x = 2 3 x +1 a. b. 5 3 10. Solve each of the following equations for x, giving 3 1+ 2 your answers correct to two decimal places. c. d. 2 5− 3 3 −1 a. 4 2 x − 5(4 x ) + 6 = 0 3+2 2 1 1 b. 2 2 x+1 − 11(2 x ) + 5 = 0 e. f. + 5− 3 2 +1 2 −1 11. Solve the following equations. 3. Evaluate each of the following expression. a. 52 x − 6(5 x+1 ) + 125 = 0 a. log3 1 b. 4 y − 5(2 y +1 ) + 16 = 0 81 b. log 2 0.25 12. Evaluate x if c. log 4 2 log 2 (1 + x) + log 2 (5 − x) − log 2 ( x − 2) = 3. d. (log 4 2)(log 2 16) 13. Solve the simultaneous equations: 1 e. 5 log8 12 − log8 3 log x y + log y x = ; xy = 64. 2 1 f. log12 4 + 2 log36 2 + log36 3 14. Solve the simultaneous equations: log 2 ( x − 2 y ) = 5; log 2 x − log 4 y = 4. 4. Express each of the following as a single expression. -3- FIS 0444 Mathematics 1 Unit 1- Algebra Exercise 3 and d such that 1. Find the degree of each of the following x 4 + ax3 + 5x 2 + x + 3  ( x 2 + 4)(x 2 − x + b) + cx + d polynomials.. Hence, with these values of a, b, c and d , write a. 3x 2 + 12x − 1 b. 5x 3 + 8 down the quotient and the remainder when the c. x15 − 1 d. 4x + 7 x 4 polynomial x 4 + ax3 + 5x 2 + x + 3 is divided by e. x 7 − x 4 + 2x 2 − 9 f. 2 + 6x3 − 9x 5 x2 + 4 2. Given f ( x) = x 4 − 3x 3 + 2 x 2 + 5x − 1, 7. Given that g ( x) = 4 x 5 − 3 x 3 + 2 x + 1 , x 4 + x 2 + x + 1  ( x 2 + A)(x 2 − 1) + Bx + C , h( x) = 2 x 3 + x 2 − 1 , determine the numerical values of A, B and C. evaluate Hence, deduce the remainder when x 4 + x 2 + x + 1 a. f (2) b. g (0) is divided by ( x + 1)(x − 1). c. 1 d. f (−1) + g (2) h  Exercise 4 2 1. If we divide the polynomial P by the factor x − c e. g (4) − 2h(1) f. f (−3) + 3g (−1) − 5h(5) and we obtain the equation P( x) = ( x − c)Q( x) + R( x) , then we say that x − c is the divisor, Q(x) is the _____________ , and 3. Given f ( x) = 5x 3 − 4 x 2 + 3x + 2 , R (x) is the ______________. g ( x) = x 4 + x 2 − 7 , 2. a. If we divide the polynomial P (x) by the h( x) = 3x 5 + 7 x 2 + 5x − 4 , factor x − c and we obtain a remainder find 0, then we know that x − c is a a. f ( x) + g ( x) b. g ( x) − 2h( x) _____________ of P. c. 3 f ( x) − 2 g ( x) d. 2 g ( x) + 3h( x) b. If we divide the polynomial P (x) by the e. 3 f ( x) − g ( x) + h( x) f. f ( x) + 2 g ( x) − 3h( x) factor x − c and we obtain a remainder of k, then we know that P(c) = ______. 3. For the function f ( x) = x 4 − 6 x3 + x 2 + 24x − 20 , 4. Find the coefficients of the term indicated in square brackets in the expansions of the polynomials use long division to determine which of the below. following are factors of f (x). a. ( x − 3)(3x 3 + 2 x 2 − x + 4) [x2 ] a. x +1 b. x−2 b. ( x 2 + x + 1)(x 2 + 4 x − 3) [x3 ] x+5 c. c. ( x 2 − 5x + 2)(x 4 − 3x 2 + 1) [x4 ] d. (2 x 3 − x 2 + 1)(4 x 3 + x + 3) [x4 ] 4. For the function g ( x) = x3 − 2 x 2 − 11x + 12 , use e. ( x 2 + 3x − 5) 2 [x2 ] the long division method to determine which of the following are factors of g (x). f. x( x 2 + 1)(x 3 + 2 x − 1) [x4 ] a. x−4 5. Find the quotient and the remainder when b. x−3 c. x −1 a. x 2 + 6 x + 5 is divided by x + 1. b. 2 x 3 + x 2 + 5 x − 4 is divided by 2 x − 1. In question 5 to 7, a polynomial P (x) and a divisor c. 4 x 4 − 3x 2 + x + 2 is divided by x − 2. d (x) are given. Use long division method to find the d. x 3 + 6 x − 2 is divided by x 2 + x + 1. quotient Q(x) and the remainder R (x) when P (x) is e. x 4 + 2 x 2 − 1 is divided by x 2 ( x − 1) 2. divided by d (x) , and express P (x) in the form f. 4 x 4 + 3x 2 + x + 2 is divided by ( x − 1)(x + 1). d ( x).Q( x) + R( x) 6. Find the numerical values of the constants a, b, c -4- FIS 0444 Mathematics 1 Unit 1- Algebra 5. P( x) = x 3 − 8, factor of p( x) − 5 , find the remainder when q(x) d ( x) = x + 2. is divided by x − 2. 17. Find a polynomial of degree 3 that has zeros -1, 6. P( x) = x 3 + 6 x 2 − 25x + 18, 1 ,3. d ( x) = x + 9. 18. Find a polynomial of degree 4 that has zeros -1, 1 ,3, 5. 7. P( x) = x 4 − 2 x 2 + 3, d ( x) = x + 2. 19. Find a polynomial of degree 3 that has zeros 1, -2 and 3 in which the coefficient of x 2 is 3. 8. The x 3 + x 2 + ax − 24 gives a expression remainder of -10 when divided by x + 1. Find the value of the constant a. Exercise 5 Decompose the following into partial fractions. 1. 2 9. If 2 x 3 + 7 x 2 − 5x + k leaves a remainder of 3 when divided by 2 x + 1 ,find the value of the ( x − 1)( x + 1) constant k. 2. 5 ( x − 1)( x + 4 ) 10. The expression 2 x 3 + px2 + qx + 5 leaves a 3. 12 remainder of -3 when divided by x − 1 and a x −9 2 remainder of 7 when divided by x − 2. Find the 4. x + 14 values of the constants p and q. x − 2x − 8 2 5. x 11. When x 4 + px3 + qx2 + rx + 6 is divided by x + 1, x − 1 and x + 2 , the remainders are 6, 12 8 x − 10 x + 3 2 and 6 respectively. Find the values of p, q, and r. 6. 9 x2 − 9 x + 6 2 x3 − x 2 − 8 x + 4 12. By using the factor theorem, show that 3x − 4 is a 7. 2x factor of f (x) ,where f ( x)  12x 3 − 4 x 2 − 13x − 4. 4 x + 12 x + 9 2 Hence, factorise f (x) completely. 8. 4 x2 − x − 2 x 4 + 2 x3 13. If p( x) = 2 x 3 + x 2 − 8x − 4 , show that x − 2 is a 9. −10 x 2 + 27 x − 14 ( x − 1) ( x + 2 ) 3 factor of p (x). Hence, factorise p (x) into its linear factors. 10. x−3 14. By using the factor theorem, find one of the x3 + 3x factors of the polynomial 11. 2 x3 + 7 x + 5 g ( x)  2 x − 9 x + 7 x + 6. ( x2 + x + 2)( x2 + 1) 3 2 hence, factorise g (x) completely. 12. x 4 + x3 + x 2 − x + 1 x ( x 2 + 1) 2 15. When a polynomial f ( x)  x 3 + ax2 − 20x + 24 is divided by x − 1 , the remainder is 7. Find this value of a, find the three linear factors of f (x). 16. Polynomials p (x) and q(x) are given by relationship q( x) = p( x)(x 5 − 2 x + 2). If x − 2 is a -5- FIS 0444 Mathematics 1 Unit 1- Algebra Answers: 12. a. 3 Exercise 1 b. 7 1. a. N c. -1 b. Q 13 a. lg 2 c. Z b. x d. N lg y e. Irrational number 2. a. 2 c. − log 2 15 b. -2 d. pq 5 2 loga c. a 2 14. 0.6309 d. -5 16. 4 e. -1 17. a. 4 f. 0 or 3 b. .783 g. 0 or 2 c. 0 or 2 3. 125 6. 15 Exercise 2 4 1. a. 1 b. 6 7. 1 1 5 c. d. 8. a. 7 27 5 2 e. 8 f. 8 b. 3 2 g. 6 h. 6 c. 5−2 6 i. 3 d. 66 − 24 6 2. a. 2 5 b. 6 e. 18 3 f. 2 5 2 15 + 3 ( 3 + 1)(1 + 2 ) c. d. g. 11 2 17 2 9. a. 5 3 ( 3 + 2 2 )( 5 + 3 ) e. f. 2 2 3 2 b. 3. a. -4 2 5 b. -2 c. 2− 2 1 c. d. 5( 3 − 2 ) 2 e. 1 d. 2 ( 3 + 1)( 2 + 1) 3 2 e. f. 1 2 (4 − 3 3 )( 6 + 2 3 ) f. 2 6 4. a. 1 or lg10 g. 5 +6 a2 h. a(1 + a ) b. lg bc 1− a x y i. (2 a + b ) 2 c. lg z3 4a − b a 3c 10. a. 3 2 + 2 3 + 30 d. logc 2 b 12 5. log c a b. 2− 6+2 1 + log c b 4 9. a. -4.419 11. 1 b. 5.782 -6- FIS 0444 Mathematics 1 Unit 1- Algebra c. 1.870 5. ( x + 2)(x 2 − 2 x + 4) − 16 d. 0.284 10. a. 0.50 or 0.793 6. ( x + 9)(x 2 − 3x + 2) b. -1 or 2.322 7. ( x + 2)(x 3 − 2 x 2 + 2 x − 4) + 11 11. a. 1 or 2 8. -14 b. 1 or 3 9. -1 12. 3 10. p = 3; q = −13 13. x = 4, y = 16; x = 16, y = 4 11. p = 3; r = 0; q = 2 14. x = 64, y = 16 12. (3x − 4)(2 x + 1) 2 Exercise 3 13. ( x − 2)(x + 2)(2 x + 1) 1. a. 2 b. 3 c. 15 d. 4 14. ( x − 2)(x − 3)(2 x + 1) e. 7 f. 5 15. x − 2, x − 2, x + 6 2. a. 9 b. 1 16. 150 c. 1 d. 109 17. x 3 − 3x 2 − x + 3 − 2 18. x 4 − 8x 3 + 14x 2 + 8x − 15 e. 3909 f. -1212 19. 3 3 15 3. a. x + 5 x − 3x + 3x − 5 4 3 2 − x + 3x + 2 x−9 2 2 b. − 6 x 5 + x 4 − 13x 2 − 10x + 1 c. − 2 x 4 + 15x 3 − 14x 2 + 9 x + 20 Exercise 5 d 9 x 5 + 2 x 4 + 23x 2 + 15x − 26 1. 1 1 − e. 3x 5 − x 4 + 15x 3 − 6 x 2 + 14x + 9 x −1 x + 1 f. − 9 x 5 + 2 x 4 + 5x 3 − 23x 2 − 12x 2. 1 1 − 4. a. -7 x −1 x + 4 b. 5 3. 2 2 c. -1 − x −3 x +3 d. 2 4. 3 2 e. -1 − f. 3 x−4 x+2 5. a. x + 5; 0 5. 1 3 − + b. x 2 + x + 3; − 1 2 ( 2 x − 1) 2 ( 4 x − 3) c. 4 x 3 + 8x 2 + 13x + 27; 56 6. 2 + 3 − 1 d. x − 1; 6 x − 1 x − 2 x + 2 2x −1 7. 1 3 e. 1; 2 x 3 + x 2 − 1 − 2 x + 3 ( 2 x + 3) 2 f. 4 x 2 + 7; x + 9 6. x 2 − x + 1; 5x − 1 8. 2 1 2 − 3− 7. x+3 x x x+2 9. 4 4 2 1 − + + Exercise 4 x + 2 x − 1 ( x − 1) ( x − 1)3 2 1. quotient; remainder 10. x +1 1 2. a. factor − b. k x2 + 3 x 3. a. No 11. 2x − 5 5 + 2 b. Yes x + x + 2 x +1 2 c. No 12. 1 x+2 1 − + 4. a. Yes x + 1 ( x 2 + 1) 2 2 x b. Not c. Yes -7-

Use Quizgecko on...
Browser
Browser