Algebra 1 (W1-S1) Lesson - Cardiff University

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Summary

This lesson from Cardiff University's International Study Centre covers Algebra 1, specifically surds and indices. It details multiplying, dividing, simplifying, adding, and subtracting surds, as well as multiplying, dividing, powers, negative and fractional indices. The lesson includes examples and exercises.

Full Transcript

Cardiff University International Study Centre Week 1 Session 1 Algebra 1 Learning Objectives To be able to multiply, divide, add and subtract surds...

Cardiff University International Study Centre Week 1 Session 1 Algebra 1 Learning Objectives To be able to multiply, divide, add and subtract surds To be able to simplify surds To be able to use the laws of indices Section 1 Surds Multiplying surds Dividing surds Simplifying surds Adding surds Subtracting surds 2 Key points Multiplying surds 𝑎 × 𝑏 = 𝑎𝑏 Dividing surds 𝑎 𝑎 ÷ 𝑏= 𝑏 Simplifying surds We can take out square numbers and find their root 4𝑎 = 4 × 𝑎 = 2 𝑎 Adding and subtracting surds If we have several of the same surd, we can add or subtract them 𝑏+2 𝑏 =3 𝑏 3 Example 1 – Multiplying surds Multiply the following surds. 2× 3 3 × 10 5× 2 2 5× 7 12 × 3 3 3 6×4 2 4 Example 2 – Dividing surds Divide the following surds. 10 ÷ 2 12 ÷ 6 3÷ 7 2 30 ÷ 6 10 ÷ 3 2 6 14 ÷ 2 2 5 Example 3 – Simplifying surds Simplify the following surds. 25 12 200 2 32 3 156 5 2 10 6 Example 4 – Adding and subtracting surds Add and subtract the following surds. 5+3 5 2 2− 2 20 + 45 2 32 − 4 2 48 + 6 12 180 − 20 − 2 5 7 Exercise Compute and simplify the following. 1) 3 5 × 3 3 6) 5 2 × 5 6 2) 4 21 ÷ 2 3 7) 4 3 × 2 6 3) 32 − 8 8) 6 42 ÷ 2 7 4) 20 30 ÷ 5 6 9) 2 3 × 2 5 5) 507 − 48 − 75 10) 320 − 20 − 20 Calculator note: Only use a calculator to help with multiplying or dividing numbers! You need to do the work by hand to get marks on the exam. 8 Answers 1) 3 5 × 3 3 ⟶ 9 15 6) 5 2 × 5 6 ⟶ 50 3 2) 4 21 ÷ 2 3 ⟶2 7 7) 4 3 × 2 6 ⟶ 24 2 3) 32 − 8 ⟶2 2 8) 6 42 ÷ 2 7 ⟶3 6 4) 20 30 ÷ 5 6 ⟶4 5 9) 2 3 × 2 5 ⟶ 4 15 5) 507 − 48 − 75 ⟶4 3 10) 320 − 20 − 20 ⟶4 5 9 Section 2 Indices Multiplying indices Dividing indices Powers of indices Negative indices Fractional indices 10 Key points Multiplying indices 𝑥 ×𝑥 =𝑥 Dividing indices 𝑥 ÷𝑥 =𝑥 Powers of indices 𝑥 =𝑥 Negative indices 1 𝑥 = 𝑥 Fractional indices 𝑥 = 𝑥 11 Example 1 – Multiplying indices Multiply the following indices. 𝑥 ×𝑥 3𝑥 × 5𝑥 𝑥 ×𝑥×𝑥 𝑥 ×𝑥 𝑥 ×𝑦 2𝑥 𝑦 × 𝑥 𝑦 12 Example 2 – Dividing indices Divide the following indices. 𝑥 ÷𝑥 𝑥 ÷𝑥 15𝑥 ÷ 3𝑥 𝑥 ÷𝑥 2𝑥 ÷ 3𝑦 2𝑥 𝑦 ÷ 𝑥𝑦 13 Example 3 – Powers of indices Simplify the following expressions. 𝑥 2 2𝑦 7𝑥 2𝑥𝑦 3 4𝑎𝑏 14 Example 4 – Power of zero Simplify the following. 𝑥 4 3𝑥 (3𝑥) 15 Example 5 – Negative indices These expressions are written in “index form”. Write them in ordinary form. 𝑥 𝑥 4 5𝑥 5𝑥 1 𝑥 7 16 Example 6 – Fractional indices These expressions are written in “index form”. Write them in ordinary form. 𝑥 𝑥 27 16 4𝑥 17 Exercise Match the ordinary form expressions (numbers) with their index form expressions (letters). 1 1 1 𝑥 11 × A 𝑥 K 𝑥 𝑥 𝑥 1 2 12 𝑥 B 1 L 𝑥 𝑥 𝑥 1 2 3 𝑥 13 𝑥 1 C 𝑥 M 𝑥 2 1 4 𝑥 14 𝑥 D 𝑥 N 𝑥 1 1 5 15 𝑥 𝑥 E 𝑥 O 2𝑥 1 6 16 𝑥 ×𝑥 1 2𝑥 F 𝑥 P 𝑥 2 4 2 7 17 𝑥 𝑥 G 𝑥 Q 𝑥 1 8 𝑥 𝑥 18 H 𝑥 R 4𝑥 𝑥 𝑥 𝑥 9 19 I 2𝑥 S 2𝑥 𝑥 4 1 10 20 4𝑥 J 𝑥 T 𝑥 𝑥 18 Answers 1 1 1P 𝑥 11 Q × A 𝑥 K 𝑥 𝑥 𝑥 1 2E 12 R 𝑥 1 𝑥 B 𝑥 L 𝑥 1 2 3K 𝑥 13 T 𝑥 1 C 𝑥 M 𝑥 2 1 4J 𝑥 14 D 𝑥 D 𝑥 N 𝑥 1 1 5M 15 G 𝑥 𝑥 E 𝑥 O 2𝑥 1 6B 16 L 𝑥 ×𝑥 1 2𝑥 F 𝑥 P 𝑥 2 4 2 7S 17 O 𝑥 𝑥 G 𝑥 Q 𝑥 1 8N 𝑥 𝑥 18 C H 𝑥 R 4𝑥 𝑥 𝑥 𝑥 9A 19 F I 2𝑥 S 2𝑥 𝑥 4 1 10 H 20 I 4𝑥 J 𝑥 T 𝑥 𝑥 19

Use Quizgecko on...
Browser
Browser