Rechnungen für die Prüfung.docx
Document Details
Tags
Full Transcript
**[Übersicht - Rechnungsarten für die Prüfung ]** **[(11. Jahrgangsstufe)]** 1. **Rezepte umrechnen** 2. **Mischungsrechnungen** 3. **Back- und Brat- und Schälverlust** 4. **Preisberechnungen** 5. **Energiegehalt berechnen** 6. **Nährstoffgehalt berechnen** 7. **Biologische Wertigkeit...
**[Übersicht - Rechnungsarten für die Prüfung ]** **[(11. Jahrgangsstufe)]** 1. **Rezepte umrechnen** 2. **Mischungsrechnungen** 3. **Back- und Brat- und Schälverlust** 4. **Preisberechnungen** 5. **Energiegehalt berechnen** 6. **Nährstoffgehalt berechnen** 7. **Biologische Wertigkeit berechnen** 8. **Gesamtenergiebedarf berechnen** 9. **Gesamtenergiebedarf decken** 10. **Energieverbrauch** 11. **Body-Mass-Index-berechnen** 12. **Fettgehalt von Käse** **\ ** **1. Rezepte umrechnen** Laut Rezept brauchen Sie für eine Person 150 g Hackfleisch. Wie viel Kilogramm Hackfleisch benötigen Sie für 5 Personen ? **(Lösung: 0,75 kg)** Für 4 Personen sind 250 g Reis angegeben. Wie viel Gramm brauchen Sie für 45 Personen ? **(Lösung: 2812,5 g)** Wie viel Kilogramm Reis kaufen Sie ein ? **(Lösung: 3 kg)** Sie haben aus dem Betrieb ein Rezept für 10 Personen mitgenommen. Nun wollen Sie für Ihre Familie (4 Personen) kochen. Rechnen Sie folgendes Rezept um ! 500 g gekochte Hähnchenbrust 250 g Grapefruitfilets 200 g Champignon 200 g grüne Paprikastreifen 200 g Mayonaise 100 g Schlagsahne **(Lösung: 200 g, 100 g, 80 g, 40 g)** Im Großhaushalt sollen Sie nun den Geflügelcocktail für 28 Personen zubereiten. Berechnen Sie die Mengen für 28 Personen ! **(Lösung: 1400 g, 700 g, 560 g, 280 g)** **Übung:** Rechnen Sie die Rezepte Ihrer Kochtage für unterschiedliche Personenanzahl um !**\ ** **2. Mischungsrechnung** Lisa möchte auch Vollkornmehl verwenden. Frau Fischer rät ihr, Vollkornmehl und Auszugsmehl im Verhältnis 2 : 1 zu mischen. Insgesamt benötigt Lisa für einen Kuchen 375 g Mehl. Wie viel Gramm Mehl muss sie jeweils abwiegen ? **Lösung:** **Rechenschritt 1: Anzahl der Teile ermitteln** Bei einem Mischungsverhältnis 2 : 1 sind es insgesamt 3 Teile **Rechenschritt 2: Gesamte Menge durch die Anzahl der Teile teilen** 1 Teil = 375 g Mehl **:** 3 = 125 g, das entspricht dem Auszugsmehl **Rechenschritt 3: Menge eines Teils mit der Anzahl der Teile malnehmen** 2 Teile = 375 g Mehl **:** 3 **x** 2 = 250 g Vollkornmehl **Übung:** Frau Fischer möchte 3 l Apfelsaftschorle selbst herstellen. Sie will den Saft 1 : 5 mischen. Berechnen Sie die Menge an Saft, die sie dafür benötigt. **(Lösung: 500 ml)** Frau Mayer will 3 kg Beeren zu Konfitüre verarbeiten. Es sollen 4 Teile Himbeeren, 3 Teile Johannisbeeren und 2 Teile Erdbeeren verwendet werden. Wie viel Gramm der jeweiligen Beerensorte benötigt sie ? **Lösung: 1 Teil = 333,33 g è 1,33 kg Himbeeren, 1,00 kg Johannisbeeren, 0,67 kg Erdbeeren)** **3. Back- und Brat- und Schälverlust** Die Küchenleiterin kauft regional erzeugten frischen Spargel ein. Sie will für 6 Tagungsgäste pro Person 400 g geschälten Spargel servieren. Erfahrungsgemäß rechnet sie mit 18 % Schälverlust. Berechnen Sie die Menge , die sie einkaufen muss (auf ein ganzes Kilo runden)! **(Lösung: 2926,82 g à 3 kg Spargel)** **Lösung:\ Die Rohware (ungeschältes Gemüse, rohes Fleisch, Teig) entspricht immer 100 %.\ **Das ist die Menge Spargel, die gekauft werden muss !\ **Das geschälte, gebratene oder gebackene Produkt entspricht immer\ 100 % abzüglich des Verlustes in Prozent\ (Verlust sind Schalen, Wasser, das beim Backen oder Braten verdampft)\ **Das ist die Menge Spargel, die auf dem Teller liegt !\ **100 % (Spargel ungeschält) -- 18 % (Schälverlust) = 82 % (geschälter Spargel)\ 6 x 400 g (Spargel pro Portion = 2400 g (geschälter Spargel)\ 82 % = 2400 g\ 1 % = 2400 g : 82\ 100 % = 2400 g : 82 x 100 = 2926,82 g è Sie muss 3 kg Spargel einkaufen** **Übung:** 1\. Das gebratene Steak soll 250 g schwer sein. Beim Grillen gehen 15 % Gewicht verloren. Wie viel rohes Fleisch muss gegrillt werden ?\ **(Lösung: 294,12 g è 300 g rohes Fleisch muss auf den Grill gelegt werden.** 2\. Sie stellen 3400 g Teig her. Beim Backen verdampfen 20 % Wasser. Wie viel kg Gebäck erhalten Sie ? **(Lösung: 2,72 kg Gebäck)** **4. Preisberechnungen** Die Küchenleiterin kauft regional erzeugten frischen Spargel ein. Sie will für 6 Tagungsgäste pro Person 400 g geschälten Spargel servieren.\ Erfahrungsgemäß rechnet sie mit 18 % Schälverlust. Berechnen Sie die Menge , die sie einkaufen muss (auf ein ganzes Kilo runden)!\ **(Lösung: Sie muss 2926,82 g à 3 kg Spargel Spargel kaufen)** Wie hoch sind die Kosten für den regionalen Spargel bei einem Kilopreis von 7,50 Euro ? **(Lösung: 22,50 Euro)** Für spanischen Spargel würde sie für die benötigte Menge 18,00 Euro bezahlen. Wie viel Prozent ist der regionale Spargel teurer )? **(Lösung: 25 %)** Die Küchenleitung überlegt, künftig Hähnchen aus ökologischer Erzeugung einzukaufen. Der Lieferant legt folgende Angebote vor: Bio-Hähnchen: 8,80 € pro kg Hähnchen aus konventioneller Erzeugung: 2,90 € pro kg Ein Hähnchen wiegt ca. 1200 g. Die Küchenleitung entscheidet sich für Bio-Hähnchen. Berechnen Sie den Mehrpreis für ein Biohähnchen ! **(Lösung: 7,08 €)** Berechnen Sie den Mehrpreis in Prozent ! **(Lösung: 303,45 %)** Maria liegen zwei Angebote für einen 25 kg Sack Kartoffeln vor. Lieferant A verlangt 13,00 €, zuzüglich 7 % Mehrwertsteuer. Lieferant B verlangt 14,25 €, inklusive Mehrwertsteuer. Ermitteln Sie das günstigere Anbebot ! **(Lösung: A kostet 13,91 € ist also günstiger)** Berechnen Sie die Ersparnis in Prozent für das günstigere Angebot ! **(Lösung: 2,39 %)** **5. Energiegehalt berechnen** Der 10-Jährige Tobias isst folgendes Pausenfrühstück: 1 Scheibe Vollkornbrot (40 g) 855 kJ / 100 g 20 g Kräuterfrischkäse 1190 kJ / 100 g 1 Möhre (120 g) 105 kJ / 100 g ½ Apfelschorle 110 kJ / 100 g 1\. Wie viel Energie nimmt Tobias mit diesem Pausenfrühstück zu sich ? **(Lösung:981 kJ)** 2\. Deckt Tobias mit diesem Pausenfrühstück den empfohlenen Energiebedarf für eine Zwischenmahlzeit ? Sein Gesamtenergiebedarf beträgt 9200 kJ pro Tag. **Lösung:** **Der Anteil einer Zwischenmahlzeit sollte 10 % vom Gesamtenergiebedarf betragen, also:** **100 % = 9200 kJ** **1% = 9200 kJ : 100** **10 % = 9200 kJ : 100 x 10 = 920 kJ** **Tobias Frühstück liefert ihm 981 kJ, das heißt, es entspricht ungefähr dem Bedarf** **Übung:** In der Schulkantine wird überbackener Blumenkohlauflauf zubereitet Für 4 Personen werden folgende Zutaten benötigt: Blumenkohl 800 g Voll-Ei 240 g Rahm 250 g Edamerkäse 250 g Energiegehalt ihn 100 g Lebensmittel -------------------------------------- Blumenkohl: 110 kJ Ei: 610 kJ Rahm 530 kJ Edamerkäse: 1045 kJ Berechnen Sie den Energiegehalt einer Portion Auflauf. **(Lösung: 1570,4 kJ)** Nehmen Sie ein beliebiges Rezept aus Ihren Kochtagen. Schlagen Sie den Energiewert der Zutaten in der Nährwerttabelle nach. Berechnen Sie jeweils den Energiegehalt des Gerichtes pro Person ! **6. Nährstoffgehalt berechnen** Die 10-jährige Elisa hat täglich einen Eiweißbedarf von ca. 30 g. Sie trinkt jeden Morden eine Tasse (200 ml) Milch. 100 ml Vollmilch enthalten 4 g Eiweiß. a\) Berechnen Sie, wie viel Gramm Eiweiß sie mit einer Tasse Milch aufnimmt. **(Lösung: 8 g)** b\) Zu wie viel Prozent deckt sie damit ihren Tagesbedarf an Eiweiß ? **(Lösung: 26,67 %)** **Übung:** 1\. Der Großvater nascht gerne zwischendurch. Um wie viel Prozent könnte die Kohlenhydratzufuhr reduziert werden, wenn er statt einer halben Tafel Schokolade einen Apfel essen würde ? **Lebensmittel** **Kohlenhydratgehalt pro 100 g Lebensmittel** --------------------- ----------------------------------------------- Vollmilchschokolade 54 g Apfel 12 g Eine Tafel Schokolade wiegt 100 g, ein Apfel 150 g. **(Lösung: 33,33 %)** 2\. Der Großvater soll nicht mehr als ca. 332 g Kohlenhydrate pro Tag zu sich nehmen. Wie viel Prozent des gesamten Kohlenhydratbedarfs werden durch die Schokolade gedeckt ? **(Lösung 8 %)** Wie viel Prozent des gesamten Kohlenhydratbedarfs werden durch den Apfel gedeckt ? **(Lösung 5,4 %)** 3\. Der Blumenkohlauflauf enthält pro Portion 1570 kJ. Wie viel Prozent des Gesamtenergiebedarfs einer 14-jährigen Schülerin, die täglich 9800 kJ benötigt sind mit dem Auflauf gedeckt ? **(Lösung: 16 %)** Beurteilen Sie den Energiegehalt ! Machen Sie 3 Vorschläge, wie die Schülerin den Energiebedarf des Mittagessens besser an ihren Bedarf anpassen kann ! Charlotte bereitet für die Kinder der Praxisgeberinn ein Erdbeer-Milchmixgetränk vor. Grundrezept für eine Portion : 80 g Erdbeeren, 15 g Erdbeerkonfitüre, 1/8 l Milch. a\) Berechnen Sie mit Hilfe der folgenden Tabelle den Calciumgehalt einer Portion des Milchmixgetränks ! **Lebensmittel** **Calciumgehalt** ------------------------ ------------------- 100 g Erdbeeren 25 mg 100 g Erdbeerkonfitüre 20 mg 100 ml Vollmilch 120 mg (Lösung: 173,0 mg Calcium)\ **7.** **Biologische Wertigkeit berechnen** **Information -- Biologische Wertigkeit** **Die Biologische Wertigkeit von Eiweiß gibt an, wie viel Gramm Körpereiweiß (z.B. Muskelzellen, Hautzellen, Hormone) aus 100 g Nahrungseiweiß (z.B. Fleischeiweiß, Getreideeiweiß) aufgebaut werden können.** **Verschiedene Lebensmittel haben unterschiedliche Biologische Wertigkeit.** **Tierische Lebensmittel können besser in Körpereiweiß umgewandelt werden. Das Eiweiß von Tieren ist dem menschlichen Eiweiß ähnlicher.** **Man misst die Biologische Wertigkeit in Prozent.** **Eiereiweiß kann zu 94 % in Körpereiweiß umgewandelt werden.** **Kartoffeleiweiß kann zu 67 % in Körpereiweiß umgewandelt werden.** **Getreideeiweiß kann zu 30 % in Körpereiweiß umgewandelt werden.** Berechnen Sie den Eiweißgehalt einer Portion von 150 g Thunfisch in Gramm (100 g Thunfisch enthalten 25 g Eiweiß). **(Lösung 37,50 g)** Die Biologische Wertigkeit von Thunfischfleisch beträgt 92 Prozent.\ Berechnen Sie die Menge an Körpereiweiß in Gramm, die aus der Portion Thunfisch (150 g) aufgebaut werden kann. **(Lösung: 34,50 g)** **8. Gesamtenergiebedarf berechnen** Der Lagerarbeiter Herr Müller hat nach der Arbeit keine Lust auf Sport. Er wiegt 73 kg. Berechnen Sie seinen Gesamtenergiebedarf (in Kilojoule) für einen Tag.\ **(Lösung mit einfacher Formel: 10 950 kJ)\ ** **Information - Einfache Formel zum Berechnen des Gesamtenergiebedarfs** **Grundumsatz = 100 kJ x Kilogramm Normalgewicht\ Leistungsumsatz = 50 kJ x Kilogramm Normalgewicht** **Übung:** Berechnen Sie Ihren eigenen Gesamtenergiebedarf ! **\ ** **9. Gesamtenergiebedarf decken** Frau Schneider hat einen Gesamtenergiebedarf von 9200 kJ, den sie aus ernährungswissenschaftlicher Sicht optimal auf fünf Mahlzeiten täglich verteilt. Berechnen Sie für Frau Schneider die entsprechende Energiemenge (in Kilojoule) pro Mahlzeit. (Lösungen: 2300 kJ, 920 kJ, 2760 kJ, 920 kJ, 2300 kJ) **Tipp: Sie müssen wissen, wie viel Prozent des Energiebedarfs bei den 5 Mahlzeiten aufgenommen werden muss.** Sandra isst häufig als Zwischenmahlzeit einen Cheeseburger mit Pommes frites und trinkt dazu eine Dose Cola. Murad zeigt ihr in einer Nährwerttabelle den Energie- und Fettgehalt dieses Fast-Food-Menüs. Energiegehalt pro Portion Fettgehalt pro Portion ---------------------- --------------------------- ------------------------ Chesseburger 1273 kJ 13,0 g Pommes frites 1320 kJ 15,6, g Cola (1 Dose 0,33 l) 611 kJ 0 g Sandra hat einen Gesamtenergiebedarf von 10 500 kJ pro Tag. Berechnen Sie, wie viel Prozent ihres Tagesenergiebedarfs sie durch diese Zwischenmahlzeit abdeckt. (Lösung: 3204 kJ = 30,5 %)\ Beurteilen Sie das Ergebnis ! Berechnen Sie, wie viel Gramm Fett Sandra aufgrund ihres Energiebedarfs pro Tag maximal aufnehmen sollte.\ **(Lösung: 85 g Fett täglich, Fast-Food-Menü deckt 33,64 % des Tagesbedarfs)\ **Bewerten Sie im Hinblick darauf den Fettgehalt des Fast-Food-Menüs. **Information -- Energiegehalt der Grundnährstoffe** **1 g Fett liefert 37 kJ,** **1 g Eiweiß liefert 17 kJ,** **1 g Kohlenhydrate (Stärke oder Zucker) liefern 17 kJ** **Information -- Anteil der Grundnährstoffe am Gesamtenergiebedarf** **55 % Kohlenhydrate** **30 % Fett** **15 % Eiweiß** **10. Energieverbrauch** Der 17-jährige Michael, 67 kg schwer, trainiert intensiv 2 ¾ Stunden Fußball. Er verbraucht beim Fußballtraining in einer Viertelstunde 645 kJ. Sein täglicher Energiebedarf beträgt während der Trainingsphase 18 800 kJ. **a) Wie viel Energie (kJ) hat er nach seinem Training verbraucht ?\ (Lösung: 7095 kJ)** Sein gleichaltriger Freund Georg benötigt ohne Training täglich 12 200 kJ an Energie. **b) Wie viel Prozent an Energie benötigt Michael täglich mehr als sein Freund Georg ? (Lösung: 54,1 %)** **Information -- Vermehrter und verminderter Grundwert** **Wenn die Frage lautet „mehr als...", dann ist der geringere Wert 100 %.** Beispiel: Wie viel kostet das T-Shirt A mehr als T-Shirt B è Preis des T-Shirt B ist 100 %. **Wenn die Frage lautet „weniger als...", „ wie viel billiger...", dann ist der höhere Wert 100 %.** Beispiel: Wie viel billiger ist Bierschinken ( 100 g kosten 1,50 €) als gekochter Schinken (100 g kosten 2,50 €) è Preis für den Schinken ist 100 %. Nina, eine 15-jährige Schülerin, hat einen Gesamtenergiebedarf von 9800 kJ. Zum Frühstück verzehrt sie folgende Lebensmittel: **Lebensmittel** **Energiegehalt** --------------------------- ------------------- 90 g Weißbrot 860 kJ 20 g Butter 651 kJ 50 g Fleischkäse 549 kJ 40 g Nuss-Nougat-Creme 920 kJ 0,2 l Cola-Getränk, light 20 kJ In den ersten Unterrichtsstunden hat Nina Sportunterricht und es steht Nordic Wlking auf dem Programm ( 10 Minuten Nordic Walking verbrauchen 226 kJ). Wie viele Stunden und Minuten muss sie walken, um den Energiegehalt des Frühstücks wieder zu verbrauchen ?\ **(Lösung: Sie nimmt 3000 kJ zu sich und muss 2 Stunden 13 Minuten walken)** **\ ** **11. Body-Mass-Index-Berechnen** Frau Schorer ist 1,70 m groß und wiegt 63 kg. Berechnen Sie Frau Schorers Energiebedarf ! **(Lösung 9450 kJ)** Prüfen Sie den BMI von Frau Schorer. Hat sie Normalgewicht ? **(Lösung: BMI = 21,8)** **Information -- Berechnung des Body-Mass-Index** **[Körpergewicht in kg\ ](Körpergröße in m)²** **Eingabe in den Taschenrechner:** **Körpergewicht : Körpergröße : Körpergröße** **12. Fettgehalt von Käse** Auf einem Emmentaler Käse finden Sie zwei Angaben zum Fettgehalt: 45 % Fettgehalt i.Tr. Fettgehalt absolut 31 g Erklären Sie Ihrer Freundin den Unterschied ! **Information zum Fettgehalt in Käse** **Der Fettgehalt bei Käse muss immer in % der Trockenmasse angegeben werden. Das heißt, es wird der Anteil Fett angegeben, der nach dem Abzug des Wassers in der „Trockenmasse" (= Eiweiß und Fett) enthalten ist (siehe Buch S. 119)** **Beispiel: Frischkäse besteht zu 60 % aus Wasser\ è 100 g Käse enthalten 40 g Trockenmasse.** **Wenn nun 70 % Fett i.Tr. auf der Packung steht, gelten die 40 g als 100 %** **100 % = 40 g** **70 % = 28 g Fett absolut** **Bei Hartkäse liegt der Wasseranteil niedriger. Parmesan enthalt 30 % Wasser è 100 g Käse enthalten 70 g Trockenmasse.** **Wenn nun 50 % Fett i.Tr. auf der Packung steht, sind die 70 g 100 %** **100 % = 70 g** **50 % = 35 g Fett absolut.** **Wir berechnen den Fettgehalt nach einer einfachen Formel** **Frischkäse: Fettgehalt i.Tr. X 0,3** **Weichkäse: Fettgehalt i.Tr. X 0,5** **Schnittkäse: Fettgehalt i.Tr. X 0,6** **Hartkäse: Fettgehalt i.Tr. X 0,7** Berechnen Sie den Fettgehalt absolut in 100 Gramm Käse: Rahmfrischkäse 50 % Fett i.Tr., Camembert 70 % Fett i.Tr., Bergkäse 48 % Fett i.Tr., Brie 30 % Fett i.Tr., Gouda 45 % Fett i.Tr. **(Lösung: 15 g, 35 g, 33,6 g, 15 g, 27 g Fett absolut)**