🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

piping-handbook (1).pdf

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Transcript

PIPING HANDBOOK Mohinder L. Nayyar, P.E. ASME Fellow The sixth edition of this Handbook was edited by Mohindar L. Nayyar, P.E. The fifth edition of this Handbook was edited by Reno C. King, B.M.E, M.M.E., D.Sc., P.E. Professor o...

PIPING HANDBOOK Mohinder L. Nayyar, P.E. ASME Fellow The sixth edition of this Handbook was edited by Mohindar L. Nayyar, P.E. The fifth edition of this Handbook was edited by Reno C. King, B.M.E, M.M.E., D.Sc., P.E. Professor of Mechanical Engineering and Assistant Dean, School of Engineering and Science, New York University Registered Professional Engineer The first four editions of this Handbook were edited by Sabin Crocker, M.E. Fellow, ASME: Registered Professional Engineer Seventh Edition MCGRAW-HILL New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto Library of Congress Cataloging-in-Publication Data Nayyar, Mohinder L. Piping handbook / [edited by] Mohinder L. Nayyar.—7th ed. p. cm. ISBN 0-07-047106-1 1. Pipe—Handbooks, manuals, etc. 2. Pipe-fitting—Handbooks, manuals, etc. I. Nayyar, Mohinder L. McGraw-Hill Copyright  2000, 1992, 1967 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. Copyright  1930, 1931, 1939, 1945 by McGraw-Hill, Inc. All Rights Reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Copyright renewed 1973, 67, and 59 by Sabin Crocker. All rights reserved. 1 2 3 4 5 6 7 8 9 0 DOC/DOC 9 0 9 8 7 6 5 4 3 2 1 0 9 ISBN 0-07-047106-1 The sponsoring editor for this book was Linda Ludewig, the editing supervisor was Peggy Lamb, and the production supervisor was Sherri Souffrance. This book was set in Times Roman by the PRD Group. Printed and bound by R. R. Donnelley & Sons Company. Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (‘‘McGraw-Hill’’) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantees the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. Is such ser- vices are required, the assistance of an appropriate professional should be sought. This book is printed on acid-free paper Other McGraw-Hill Handbooks of Interest Avallone & Baumeister ⭈ MARKS’ STANDARD HANDBOOK FOR MECHANICAL ENGINEERS Bleier ⭈ FAN HANDBOOK Brady et al. ⭈ MATERIALS HANDBOOK Bralla ⭈ DESIGN FOR MANUFACTURABILITY HANDBOOK Brink ⭈ HANDBOOK OF FLUID SEALING Czernik ⭈ GASKET HANDBOOK Eckhardt ⭈ KINEMATIC DESIGN OF MACHINES AND MECHANISMS Elliott et al. ⭈ STANDARD HANDBOOK OF POWERPLANT ENGINEERING Frankel ⭈ FACILITY PIPING SYSTEMS HANDBOOK Haines & Wilson ⭈ HVAC SYSTEMS DESIGN HANDBOOK Harris & Crede ⭈ SHOCK AND VIBRATION HANDBOOK Hicks ⭈ HANDBOOK OF MECHANICAL ENGINEERING CALCULATIONS Higgins et al. ⭈ MAINTENANCE ENGINEERING HANDBOOK Hodson ⭈ MAYNARD’S INDUSTRIAL ENGINEERING HANDBOOK Juran & Gryna ⭈ JURAN’S QUALITY CONTROL HANDBOOK Karassik et al. ⭈ PUMP HANDBOOK Lewis ⭈ FACILITY MANAGER’S OPERATION AND MAINTENANCE HANDBOOK Lingaiah ⭈ MACHINE DESIGN DATA HANDBOOK Parmley ⭈ STANDARD HANDBOOK OF FASTENING AND JOINING Rohsenow ⭈ HANDBOOK OF HEAT TRANSFER Rosaler ⭈ STANDARD HANDBOOK OF PLANT ENGINEERING Rothbart ⭈ MECHANICAL DESIGN HANDBOOK Shigley & Mischke ⭈ STANDARD HANDBOOK OF MACHINE DESIGN Skousen ⭈ THE VALVE HANDBOOK Solomon ⭈ SENSORS HANDBOOK Stoecker ⭈ INDUSTRIAL REFRIGERATION HANDBOOK Suchy ⭈ HANDBOOK OF DIE DESIGN Walsh ⭈ McGRAW-HILL MACHINING AND METALWORKING HANDBOOK Walsh ⭈ ELECTROMECHANICAL DESIGN HANDBOOK Wang ⭈ HANDBOOK OF AIR CONDITIONING AND REFRIGERATION Woodson et al. ⭈ HUMAN FACTORS DESIGN HANDBOOK Wrennall & Lee ⭈ HANDBOOK OF COMMERCIAL AND INDUSTRIAL FACILITIES MANAGEMENT Ziu ⭈ HANDBOOK OF DOUBLE CONTAINMENT PIPING SYSTEMS For more information about McGraw-Hill materials, call 1-800-2-MCGRAW in the United States. In other countries, call your nearest McGraw-Hill office. CONTENTS Honors List xi Preface xvii How to Use This Handbook xix Part A: Piping Fundamentals Chapter A1. Introduction to Piping Mohinder L. Nayyar A.1 Chapter A2. Piping Components Ervin L. Geiger A.53 Chapter A3. Piping Materials James M. Tanzosh A.125 Chapter A4. Piping Codes and Standards Mohinder L. Nayyar A.179 Chapter A5. Manufacturing of Metallic Piping Daniel R. Avery and Alfred Lohmeier A.243 Chapter A6. Fabrication and Installation of Piping Edward F. Gerwin A.261 Chapter A7. Bolted Joints Gordon Britton A.331 Chapter A8. Prestressed Concrete Cylinder Pipe and Fittings Richard E. Deremiah A.397 Chapter A9. Grooved and Pressfit Piping Systems Louis E. Hayden, Jr. A.417 v vi CONTENTS Chapter A10. Selection and Application of Valves Mohinder L. Nayyar, Dr. Hans D. Baumann A.459 Part B: Generic Design Considerations Chapter B1. Hierarchy of Design Documents Sabin Crocker, Jr. B.1 Chapter B2. Design Bases Joseph H. Casiglia B.19 Chapter B3. Piping Layout Lawrence D. Lynch, Charles A. Bullinger, Alton B. Cleveland, Jr. B.75 Chapter B4. Stress Analysis of Piping Dr. Chakrapani Basavaraju, Dr. William Saifung Sun B.107 Chapter B5. Piping Supports Lorenzo Di Giacomo, Jr., Jon R. Stinson B.215 Chapter B6. Heat Tracing of Piping Chet Sandberg, Joseph T. Lonsdale, J. Erickson B.241 Chapter B7. Thermal Insulation of Piping Kenneth R. Collier, Kathleen Posteraro B.287 Chapter B8. Flow of Fluids Dr. Tadeusz J. Swierzawski B.351 Chapter B9. Cement-Mortar and Concrete Linings for Piping Richard E. Deremiah B.469 Chapter B10. Fusion Bonded Epoxy Internal Linings and External Coatings for Pipeline Corrosion Protection Alan Kehr B.481 Chapter B11. Rubber Lined Piping Systems Richard K. Lewis, David Jentzsch B.507 CONTENTS vii Chapter B12. Plastic Lined Piping for Corrosion Resistance Michael B. Ferg, John M. Kalnins B.533 Chapter B13. Double Containment Piping Systems Christopher G. Ziu B.569 Chapter B14. Pressure and Leak Testing of Piping Systems Robert B. Adams, Thomas J. Bowling B.651 Part C: Piping Systems Chapter C1. Water Systems Piping Michael G. Gagliardi, Louis J. Liberatore C.1 Chapter C2. Fire Protection Piping Systems Russell P. Fleming, Daniel L. Arnold C.53 Chapter C3. Steam Systems Piping Daniel A. Van Duyne C.83 Chapter C4. Building Services Piping Mohammed N. Vohra, Paul A. Bourquin C.135 Chapter C5. Oil Systems Piping Charles L. Arnold, Lucy A. Gebhart C.181 Chapter C6. Gas Systems Piping Peter H. O. Fischer C.249 Chapter C7. Process Systems Piping Rod T. Mueller C.305 Chapter C8. Cryogenic Systems Piping Dr. N. P. Theophilos, Norman H. White, Theodore F. Fisher, Robert Zawierucha, M. J. Lockett, J. K. Howell, A. R. Belair, R. C. Cipolla, Raymond Dale Woodward C.391 Chapter C9. Refrigeration Systems Piping William V. Richards C.457 viii CONTENTS Chapter C10. Hazardous Piping Systems Ronald W. Haupt C.533 Chapter C11. Slurry and Sludge Systems Piping Ramesh L. Gandhi C.567 Chapter C12. Wastewater and Stormwater Systems Piping Dr. Ashok L. Lagvankar, John P. Velon C.619 Chapter C13. Plumbing Piping Systems Michael Frankel C.667 Chapter C14. Ash Handling Piping Systems Vincent C. Ionita, Joel H. Aschenbrand C.727 Chapter C15. Compressed Air Piping Systems Michael Frankel C.755 Chapter C16. Compressed Gases and Vacuum Piping Systems Michael Frankel C.801 Chapter C17. Fuel Gas Distribution Piping Systems Michael Frankel C.839 Part D: Nonmetallic Piping Chapter D1. Thermoplastics Piping Dr. Timothy J. McGrath, Stanley A. Mruk D.1 Chapter D2. Fiberglass Piping Systems Carl E. Martin D.79 Part E: Appendices Appendix E1. Conversion Tables Ervin L. Geiger E.1 Appendix E2. Pipe Properties (US Customary Units) Dr. Chakrapani Basavaraju E.13 CONTENTS ix Appendix E2M. Pipe Properties (Metric) Dr. Chakrapani Basavaraju E.23 Appendix E3. Tube Properties (US Customary Units) Ervin L. Geiger E.31 Appendix E3M. Tube Properties (Metric) Troy J. Skillen E.37 Appendix E4. Friction Loss for Water in Feet per 100 Feet of Pipe E.39 Appendix E4M. Friction Loss for Water in Meters per 100 Meters of Pipe Troy J. Skillen E.59 Appendix E5. Acceptable Pipe, Tube and Fitting Materials per the ASME Boiler and Pressure Vessel Code and the ASME Pressure Piping Code Jill M. Hershey E.61 Appendix E6. International Piping Material Specifications R. Peter Deubler E.69 Appendix E7. Miscellaneous Fluids and Their Properties Akhil Prakash E.83 Appendix E8. Miscellaneous Materials and Their Properties Akhil Prakash E.101 Appendix E9. Piping Related Computer Programs and Their Capabilities Anthony W. Paulins E.109 Appendix E10. International Standards and Specifications for Pipe, Tube, Fittings, Flanges, Bolts, Nuts, Gaskets and Valves Soami D. Suri E.119 Index I.1 HONORS LIST CONTRIBUTORS Robert B. Adams, President & CEO, Expansion Seal Technologies, 334 Godshall Drive, Harleysville, PA 19438-2008 (CHAP. B14) Charles L. Arnold, Principal Pipeline Consultant, 716 Hillside Avenue, Albany, CA 94706 (CHAP. C5) Joel E. Aschenbrand, James S. Merritt Company, Lizell Building, Suite 202, P. O. Box 707, Montgomeryville, PA 18936-0707 (CHAP. C14) Daniel R. Avery, Technical Marketing Manager, Wyman-Gordon Forgings, Inc., Cameron Forged Product Division, P. O. Box 40456, Houston, TX 77240-0456 (CHAP. A5) Dr. Chakrapani Basavaraju, Engineering Specialist, Bechtel Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAP. B4 AND APPS. E2 AND E2M) Dr. Hans D. Baumann, Fisher Controls International, Inc., Portsmouth, NH 03801 (CHAP. A10) A. R. Belair, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150- 2053 (CHAP. C8) Paul A. Bourquin, Formerly Senior Vice President, Wolff & Munier, Inc., 50 Broadway, Hawthorne, NY 10532 (CHAP. C4) Thomas J. Bowling, P.E., Manager, Pipe Repair Product Line, Team Environmental Ser- vices, Inc., Alvin, TX 77512 (CHAP. B14) Gordon Britton, President, Integra Technologies Limited, 1355 Confederation Street, Sarnia, Ontario, N7T7J4, Canada (CHAP. A7) Charles A. Bullinger, Formerly Engineering Specialist, Bechtel Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAP. B3) Joseph H. Casiglia, P.E. Consulting Engineer, Piping, Detroit Edison, 2000 Second Ave., Detroit, MI 48226 (CHAP. B2) R. C. Cipolla, Cryogenic Equipment Engineer, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Alton B. Cleveland, Jr., President, Jacobus Technology, Inc., 7901 Beech Craft Ave., Gaith- ersburg, MD 20879 (CHAP. B3) Kenneth R. Collier, Systems Engineer, Pittsburgh Corning, 800 Presque Isle Drive, Pitts- burgh, PA 15239 (CHAP. B7) Sabin Crocker, Jr., P.E. 307 Claggett Drive, Rockville, MD 20851 (CHAP. B1) Richard E. Deremiah, P.E., Project Manager, Price Brothers Company, 367 West Second Avenue, Dayton, OH 45402 (CHAPS. A8 AND B9) R. Peter Deubler, P.E., Technical Director, Fronek Company, Inc., 15 Engle Street, Engle- wood, NJ 07631 (APP. E6) Lorenzo DiGiacomo, Jr., Senior Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAP. B5) C. J. Erickson, Engineering Consultant, Retired from E. I. DuPont De Nemours & Co., P.O. Box 6090, Newark, DE 19714-6090 (CHAP. B6) xi xii HONORS LIST Michael B. Ferg, Marketing Engineer, Crane Resistoflex Company, One Quality Way, Mar- ion, NC 28752 (CHAP. B12) Peter H. O. Fischer, Manager, Pipeline Operations, Bechtel Corporation, P.O. Box 193965, 50 Beale Street, San Francisco, CA 94119 (CHAP. C6) Theodore F. Fisher, Process Engineer, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Russell P. Fleming, P.E., Vice President Engineering, National Fire Sprinkler Association, Inc., Robin Hill Corporate Park, Route 22, P. O. Box 1000, Patterson, NY 12563 (CHAP. C2) Phillip D. Flenner, P.E., Staff Engineer Welding, Consumer Energy, Palisades Nuclear Plant, 27780 Blue Star Highway, Covert, MI 49043-9530 (CHAP. C10) Michael Frankel, CIPE, 56 Emerson Road, Somerset, NJ 08873 (CHAPS. C13, C15, C16 AND C17) Michael G. Gagliardi, Manager, Raytheon Engineers & Constructors, 160 Chubb Avenue, Lyndhurst, NJ 07071 (CHAPS. C1 AND APP. E4) Dr. William E. Gale, P.E., Bundy, Gale & Shields, 44 School Terrace, Novato, CA 94945 (CHAP. C10) Ramesh L. Gandhi, Chief Slurry Engineer, Bechtel Corporation, P.O. Box 193965, 50 Beale Street, San Francisco, CA 94119 (CHAP. C11) Lucy A. Gebhart, Pipeline Engineer, Bechtel Corporation, P.O. Box 193965, 50 Beale Street, San Francisco, CA 94119 (CHAP. C5) Ervin L. Geiger, P.E., Engineering Supervisor, Bechtel Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAP. A2, APPS. E1 AND E3) Edward F. Gerwin, Life Fellow ASME, 1515 Grampian Boulevard, Williamsport, PA 17701 (CHAP. A6) Ronald W. Haupt, P.E., Senior Consultant, Pressure Piping Engineering Assoc., 291 Puffin Court, Foster City, CA 94404-1318 (CHAP. C10) Louis E. Hayden, Jr., Divisional Operations Manager, Victaulic Company of America, 4901 Kesslersville Road, Easton, PA 18040 (CHAP. A9) Jill M. Hershey, Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (APP. E5) J. K. Howell, Cold Box Engineer, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Vincent C. Ionita, Senior Engineering Specialist, 5275 Westview Drive, Frederick, MD 21703 (CHAP. C14) David Jentzsch, General Manager, Blair Rubber Company, 1252 Mina Avenue, Akron, OH 44321 (CHAP. B11) John M. Kalnins, Crane Resistoflex Company, 4675 E. Wilder Road, Bay City, MI 48706 (CHAP. B12) J. Alan Kehr, Technical Marketing Manager, 3M Company, 3M Austin Center, Building A147-4N-02, 6801 River Place Boulevard, Austin, TX 78726-9000 (CHAP. B10) Dr. Ashok L. Lagvankar, Vice President, Earth Tech., 3121 Butterfield Road, Oak Brook, IL 60523 (CHAP. C12) Richard K. Lewis, Executive Vice President, Blair Rubber Company, 1252 Mina Avenue, Akron, OH 44321 (CHAP. B11) Louis J. Liberatore, Staff Engineer, Raytheon Engineers & Constructors, 160 Chubb Avenue, Lyndhurst, NJ 07071 (CHAP. C1 AND APP. E4) HONORS LIST xiii Alfred Lohmeier, Materials Engineer, Formerly Vice President, Stanitomo Corporation of America, 345 Park Ave., New York, NY 10154 (CHAP. A5) Michael J. Lockett, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Joseph T. Lonsdale, Director of Engineering, Dryden Engineering Company, Fremont, CA 94063 (CHAP. B6) Lawrence D. Lynch, Engineering Supervisor, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAP. B3) Carl E. Martin, Director Marketing, Fibercast Company, P.O. Box 968, Sand Springs, Okla- homa 74063-0968 (CHAP. D2) Timothy J. McGrath, Principal, Simpson, Gumpertz & Heger, Inc., 297 Broadway, Arling- ton, MA 02174-5310 (CHAP. D1) Stanley A. Mruk, 115 Grant Avenue, New Providence, NJ 07974 (CHAP. D1) Rod T. Mueller, Engineering Standards Coordinator, Exxon Research & Engineering Co., 180 Park Avenue, Florham Park, NJ 07932 (CHAP. C7) Mohinder L. Nayyar, P.E., ASME Fellow, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAPS. A1, A4, AND A10) Alan D. Nance, A. D. Nance Associates, Inc., 4545 Glenda Lane, Evans, GA 30809-3215 (CHAP. C10) Kathleen Posteraro, Systems Engineer, Pittsburgh Corning, 800 Presque Isle Drive, Pitts- burgh, PA 15239 (CHAP. B7) Anthony Paulin, President, Anthony Research Group, 25211 Gregan’s Mill Road, Suite 315, Spring, TX 77380-2924 (APP. E9) Akhil Prakash, P.E., Supervisor Engineer, 12741 King Street, Overland Park, KS 66213 (APPS. E7 AND E8) William V. Richards, P.E., 4 Court of Fox River Valley, Lincolnshire, IL 60069 (CHAP. C9) Chet Sandberg, Chief Engineer, Raychem Corporation, 300 Constitution Drive, Menlo Park, CA 94025-1164 (CHAP. B6) Robert E. Serb, P.E., Pressure Piping Engineering Assoc., 291 Puffin Court, Foster City, CA 94404-1318 (CHAP. C10) Troy J. Skillen, Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (APPS. E3M AND E4M) Soami D. Suri, P.E., Senior Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (APP. E10) Jon R. Stinson, Supervisor, Engineering, Lisega, Inc., 375 West Main Street, Newport, TN 37821 (CHAP. B5) Dr. William Saifung Sun, Engineering Specialist, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (CHAP. B4) Dr. Tadeusz J. Swierzawski, 50 Chandler Road, Burlington, MA 01803 (CHAP. B8) James M. Tanzosh, Supervisor, Materials Engineering, Babcock & Wilcox Co., 20 S. Van Buren Ave., Barberton, OH 44203 (CHAP. A3) N. P. Theophilos, Standards Manager, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Daniel A. Van Duyne, 206 Nautilus Drive, Apt. No. 107, New London, CT 06320 (CHAP. C3) xiv HONORS LIST John P. Velon, Vice President, Harza Engineering Company, Sears Towers, 233 South Wacker Drive, Chicago, IL 60606-6392 (CHAP. C11) Mohammed N. Vohra, Consulting Engineer, 9314 Northgate Road, Laurel, MD 20723 (CHAP. C4) Norman H. White, Applications Engineer, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Raymond Dale Woodward, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tona- wanda, NY 14150-2053 (CHAP. C8) Robert Zawierucba, Materials Engineer, PRAXAIR, Inc., 175 East Park Drive, P.O. Box 44, Tonawanda, NY 14150-2053 (CHAP. C8) Christopher G. Ziu, 7 Douglas Street, Merrimack, NH 03054 (CHAP. B13) REVIEWERS Harry A. Ainsworth, S.P.E., Consultant, 4 Maple Avenue, Sudbury, MA 01776-344 Karen L. Baker, Senior Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Dr. C. Basavaraju, Senior Engineering Specialist, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Robert Burdick, Bassett Mechanical, P. O. Box 755, Appleton, WI 54912-0755 Richard E. Chambers, Principal, Simpson, Gumpertz & Hager, Inc., 297 Broadway, Arling- ton, MA 02174 Sabin Crocker, Jr., P.E., 307 Claggett Drive, Rockville, MD 20878. Formerly Project Engi- neer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Donald R. Frikken, P.E., Engineering Fellow, Solutia, Inc. 10300 Olive Boulevard, St. Louis, MO 63141-7893 E. L. Geiger, P.E. Engineering Supervisor, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 James Gilmore, Senior Engineering Specialist, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Evans C. Goodling, Jr., P.E., Consulting Engineer, Parsons Energy & Chemical Group, 2675 Morgantown Road, Reading, PA 19607-9676 John Gruber, Senior Engineering Specialist, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Charles Henley, Engineering Supervisor, Black & Veach, 8400 Ward Parkway, P. O. Box 8405, Kansas City, MO 64114 Jill M. Hershey, Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Michele L. Jocelyn, P.E., Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 H. Steven Kanofsky, P.E., Principal Civil Engineer, Washington Suburban Sanitary Com- mission, 14501 Sweitzer Lane, Laurel, MD 20707 (CHAP. C1) James Kunze, Vice President, P.E., Earth Tech., 1020 North Broadway, Milwaukee, WI 53202 HONORS LIST xv Donald J. Leininger, 7810 College View Court, Roanoke, VA 24019-4442 Jimmy E. Meyer, Middough Association, Inc., 1910E 13th Street, Suite 300, Cleveland, OH 44114-3524 Ronald G. McCutcheon, Senior Design Engineer, Mechanical Systems & Equipment Depart- ment, Ontario Hydro Nuclear, 700 University Avenue, Toronto, ON, Canada, M5G1X6 Mohinder L. Nayyar, ASME Fellow, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Ann F. Paine, P.E., Senior Engineering Specialist, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Soami D. Suri, P.E., Senior Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (APP. E10) Henry R. Sonderegger, P.E., Engineering Manager, Research and Development Center, 1467 Elmwood Avenue, Cranston, RI 02910 George W. Spohn, III, Executive Vice President, Coleman Spohn Corporation, 1775 E. 45th Street, Cleveland, OH 44103-2318 Kristi Vilminot, Engineering Supervisor, Black & Veach, 2200 Commonwealth Boulevard, Ann Arbor, MI 48105 Mahmood Naghash, Senior Engineering Specialist, Bechtel Power Corporation, 5275 West- view Drive, Frederick, MD 21703 Ralph W. Rapp, Jr., Senior Staff Engineer, Shell Oil Product Company, P. O. Box 2099, Houston, TX 77252-2099. Gursharan Singh, Engineering Supervisor, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Walter M. Stephan, Engineering Manager, Flexitallic, Inc., 1300 Route 73, Suite 311, Mt. Laurel, NJ 08054 Dr. Jagdish K. Virmani, Senior Engineering Specialist, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Charles Webb, Application Engineer, Ameron, P. O. Box 878, Burkburnett, TX 76354 Horace E. Wetzell, Jr., Vice President, The Smith & Oby Company, 6107 Carnegie Avenue, Cleveland, OH 44103 TECHNICAL AND ADMINISTRATIVE SUPPORT Michelle A. Clay, Project Administrator, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Rohit Goel, Piping Engineer, Bechtel India Limited, 249A Udyog Vihar, Phase IV, Gurgaon- 122015, Haryana, India Jill M. Hershey, Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 Dheeraj Modawel, Piping Engineer, Bechtel India Limited, 249A Udyog Vihar, Phase IV, Gurgaon-122015, Haryana, India Darya Nabavian, Mechanical Engineer, Bechtel Corporation, 5275 Westview Drive, Freder- ick, MD 21703 xvi HONORS LIST Sandeep Singh, Piping Engineer, Bechtel India Limited, 249A Udyog Vihar, Phase IV, Gurgaon-122015, Haryana, India Troy J. Skillen, Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 M. C. Stapp, Project Administrator, Bechtel Power Corporation, 5275 Westview Drive, Fred- erick, MD 21703 Soami D. Suri, P.E., Senior Mechanical Engineer, Bechtel Power Corporation, 5275 Westview Drive, Frederick, MD 21703 (APP. E10) James Kenyon White, Administrative Supervisor, Bechtel Power Corporation, 5275 West- view Drive, Frederick, MD 21703 Dolly Pollen, 656 Quince Orchard Road, Gaithersburg, MD 20878 PREFACE It is with great sense of gratitude and humility I take this blessed moment to offer this Seventh Edition of Piping Handbook. The challenge presented by the success of the Sixth Edition, coupled with our objective to enhance its reference value and widen its scope, motivated us to reach out and draw upon the recognized expertise on piping related topics not covered in the Sixth Edition. In addition, we directed our synergetic efforts to upgrade the existing contents to include the latest advances and developments in the field of piping and related technologies. Fifteen (15) new chapters and nine (9) new appendixes have been added. These additions accord a unique status to this resource book as it covers piping related topics not covered in any one book. Inclusion of metric and/or SI units along with US customary units is intended to accommodate the growing needs of the shrinking world and the realities of the international market. We have maintained the familiar and easy to use format of the Sixth Edition. I consider myself fortunate to have the opportunity to associate and work with renowned and recognized specialists and leaders whose contributions are not limited to this Piping Handbook, but go far beyond. For me it has been a rewarding and enlightening experience. I find myself humbled by depth of their knowledge, practi- cal experience, and professional achievements. These distinguished contributors have offered the sum total of their know how in the form of guidance, cautions, prohibitions, recommendations, practical illustrations, and examples, which should be used prudently with due consideration for application requirements. The strength, authenticity, and utility of this reference book lie in the wide spread diversity of their expertise and unity of their professionalism. Based upon the feedback received over the past seven years from the users of the Sixth Edition of this handbook, I feel honored to express my and users gratitude to all the contributors for their commitment to their profession and their higher goal of helping others. They have made the difference. Their spirit of giving back has not only continued, but has brought in new contributors to expand the scope and enhance the utility of this handbook. I feel confident that all the contributors shall enjoy the professional satisfaction and the gratitude of users of this handbook. The selfless efforts of all the reviewers listed in the Honors List are of great significance in making improvements in presentation of the subject matter. The extent of their experience, knowledge, and an insight of topics has been instrumental in extracting the best out of contributors and upgrading the contents of this handbook. The contributors and reviewers have earned a distinguished status. I salute their commitment; admire their efforts; respect their professionalism; and applaud their achievements. I want to recognize their perseverance, dedication, hard work and sincerity of their commitment in spite of increasing demands on their time. I am indebted to the members of the editorial team who spent countless hours and made personal sacrifices to make this team project a reality. Jill Hershey, Troy Skillen, and Soami Suri did not spare any effort to not only fulfill their commitment, but went beyond to accomplish the objectives. They offered constructive comments, xvii xviii PREFACE new ideas and energy to support them. In addition to contributing, they assisted me in reviewing, editing, checking and correcting the manuscript. Furthermore, they provided an objective assessment of needs of progressive professionals involved in piping related fields. Their efforts reinforced my faith in bright future of our profession. The support and assistance provided by Ervin L. Geiger and Sabin Crocker, Jr., as Associate Editors, is key to the successful completion of this effort. Each and every individual providing administrative, technical and automation services, listed in Honors List, kept the entire process moving smoothly by their sincere efforts. Linda Ludewig, Peggy Lamb, and the others at McGraw-Hill could not be better or more cooperative in accommodating our reasonable and unreason- able requests in producing this handbook to the best of their abilities. Whenever you, the readers and users of this handbook, find it to be of help in your mission, please thank the contributors, reviewers, technical, administrative and automation personnel listed in the Honors List, and the editorial and production staff of McGraw-Hill. If, at any time, this handbook falls short of your expectations, please do not hesitate to pass it on to me. It will help us improve the contents and their utility. I shall owe you my gratitude. I take pride in recognizing the active support of my daughters, Mukta and Mahak; and my son, Manav; who helped me in researching and collecting data; preparing manuscript; reviewing proof pages; and performing other tasks, as needed. This time they not only allowed me to devote their share of my life to this handbook, but also dedicated a part of their life to it. My wife, Prabha, provided the proverbial support a spouse can hope for, in doing and accomplishing what I aimed for. No words can convey my feelings and thoughts for her contributions. Mohinder L. Nayyar HOW TO USE THIS HANDBOOK As with any handbook, the user of this handbook can seek the topic covered either with the help of the table of contents or the index. However, an understanding of the organization and the format of this handbook will enhance its utility. The handbook is organized in five parts: Part A, Piping Fundamentals: There are ten chapters in Part A, numbered Al through A10, dealing with commonly used terminology associated with piping units—U.S. Customary units and metric/SI units, piping components, materials, piping codes and standards, manufacturing of piping, fabrication and installation of piping, bolted joints, prestressed concrete piping, and grooved and Pressfit piping systems, Each chapter is a self-contained unit. The chapter numbers, figures and tables sequentially preceded. For example, in the case of Chapter Al, the figures are numbered as Fig. A1.1, Fig. A1.2, and so on, and tables are numbered as Table A1.1, Table A1.2, and so on. Pages are numbered sequentially throughout each part, starting with A.1. Part B, Generic Design Considerations: The Part B consists of fourteen chapters. The topics covered deal with generic design considerations, which may be applicable to any piping system irrespective of the fluid or the mixture carried by the piping. The generic topics are design documents, design bases, piping layout, stress analysis, piping supports, heat tracing, thermal insulation, and flow of fluids. In addition, the lined piping systems: cement, rubber, epoxy and plastic lined piping systems are included to provide guidance when corrosion is a concern. A chapter on double containment piping systems provides needed guidance to handle hazardous fluids. The last chapter in Part B deals with pressure testing of piping systems. The chapter, page, figure, and table numbering scheme is similar to that described for Part A. Part C, Piping Systems: There are 17 chapters in Part C, each dealing with a specific type of piping system or systems involving application of specific considera- tions. The piping systems covered include water, fire protection, steam, building services, oil, gas, chemical and refinery (process piping), cryogenic, refrigeration, toxic and hazardous wastes, slurry and sludge, stormwater and wastewater, plumb- ing, ash handling, compressed air and vacuum, fuel gas and laboratory piping systems. The numbering approach for Part C is similar to Part A. Part D, Nonmetallic Piping: Part D has two chapters, Dl and D2. Chapter Dl addresses thermoplastics piping, and Chapter D2 covers fiberglass piping systems. The numbering scheme for pages, figures, and tables is similar to the one followed for Part A. Part E, Appendixes: Part E of the handbook contains reference technical data and information that could be very handy and useful to the users. It consists of 10 appendixes, El through E10. They include conversion tables, pipe and tube proper- ties, pressure drop tables, ASTM and international piping materials, fluid properties, piping related computer programs, and an exhaustive list of international standards. Depending upon the need, level of piping knowledge, and requirements, the xix xx HOW TO USE THIS HANDBOOK user of this handbook may find it very convenient to locate the desired information by focusing on a specific part of the handbook. Last but not least, the Seventh Edition of Piping Handbook includes metric/SI units in parentheses. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. At times, unit equivalents are rounded off while at places they are approximated to provide a measure of equivalency. Different approaches have been followed depending upon the practices prevalent in a segment of the piping industry. We regret the variations and expect the users to understand the state of the art in regard to use of units. The users are cautioned to check and verify units prior to making calculations with the help of equations included in the handbook or elsewhere. P A R T A PIPING FUNDAMENTALS CHAPTER A1 INTRODUCTION TO PIPING Mohinder L Nayyar, P. E. ASME Fellow Bechtel Power Corporation INTRODUCTION Piping systems are like arteries and veins. They carry the lifeblood of modern civilization. In a modern city they transport water from the sources of water supply to the points of distribution; convey waste from residential and commercial buildings and other civic facilities to the treatment facility or the point of discharge. Similarly, pipelines carry crude oil from oil wells to tank farms for storage or to refineries for processing. The natural gas transportation and distribution lines convey natural gas from the source and storage tank forms to points of utilization, such as power plants, industrial facilities, and commercial and residential communities. In chemical plants, paper mills, food processing plants, and other similar industrial establish- ments, the piping systems are utilized to carry liquids, chemicals, mixtures, gases, vapors, and solids from one location to another. The fire protection piping networks in residential, commercial, industrial, and other buildings carry fire suppression fluids, such as water, gases, and chemicals to provide protection of life and property. The piping systems in thermal power plants convey high-pressure and high-temperature steam to generate electricity. Other piping systems in a power plant transport high- and low-pressure water, chemicals, low-pressure steam, and condensate. Sophisticated piping systems are used to pro- cess and carry hazardous and toxic substances. The storm and wastewater piping systems transport large quantities of water away from towns, cities, and industrial and similar establishments to safeguard life, property, and essential facilities. In health facilities, piping systems are used to transport gases and fluids for medical purposes. The piping systems in laboratories carry gases, chemicals, vapors, and other fluids that are critical for conducting research and development. In short, the piping systems are an essential and integral part of our modern civilization just as arteries and veins are essential to the human body. The design, construction, operation, and maintenance of various piping systems involve understanding of piping fundamentals, materials, generic and specific design considerations, fabrication and installation, examinations, and testing and inspection requirements, in addition to the local, state and federal regulations. A.3 A.4 PIPING FUNDAMENTALS PIPING Piping includes pipe, flanges, fittings, bolting, gaskets, valves, and the pressure- containing portions of other piping components. It also includes pipe hangers and supports and other items necessary to prevent overpressurization and overstressing of the pressure-containing components. It is evident that pipe is one element or a part of piping. Therefore, pipe sections when joined with fittings, valves, and other mechanical equipment and properly supported by hangers and supports, are called piping. Pipe Pipe is a tube with round cross section conforming to the dimensional require- ments of ASME B36.10M Welded and Seamless Wrought Steel Pipe ASME B36.19M Stainless Steel Pipe Pipe Size Initially a system known as iron pipe size (IPS) was established to designate the pipe size. The size represented the approximate inside diameter of the pipe in inches. An IPS 6 pipe is one whose inside diameter is approximately 6 inches (in). Users started to call the pipe as 2-in, 4-in, 6-in pipe and so on. To begin, each pipe size was produced to have one thickness, which later was termed as standard (STD) or standard weight (STD. WT.). The outside diameter of the pipe was standardized. As the industrial requirements demanded the handling of higher-pressure fluids, pipes were produced having thicker walls, which came to be known as extra strong (XS) or extra heavy (XH). The higher pressure requirements increased further, requiring thicker wall pipes. Accordingly, pipes were manufactured with double extra strong (XXS) or double extra heavy (XXH) walls while the standardized outside diameters are unchanged. With the development of stronger and corrosion-resistant piping materials, the need for thinner wall pipe resulted in a new method of specifying pipe size and wall thickness. The designation known as nominal pipe size (NPS) replaced IPS, and the term schedule (SCH) was invented to specify the nominal wall thickness of pipe. Nominal pipe size (NPS) is a dimensionless designator of pipe size. It indicates standard pipe size when followed by the specific size designation number without an inch symbol. For example, NPS 2 indicates a pipe whose outside diameter is 2.375 in. The NPS 12 and smaller pipe has outside diameter greater than the size designator (say, 2, 4, 6,...). However, the outside diameter of NPS 14 and larger pipe is the same as the size designator in inches. For example, NPS 14 pipe has an outside diameter equal to 14 in. The inside diameter will depend upon the pipe wall thickness specified by the schedule number. Refer to ASME B36.10M or ASME B36.19M. Refer to App. E2 or E2M. Diameter nominal (DN) is also a dimensionless designator of pipe size in the metric unit system, developed by the International Standards Organization (ISO). It indicates standard pipe size when followed by the specific size designation number INTRODUCTION TO PIPING A.5 TABLE A1.1 Pipe Size Designators: NPS and DN NPS DN NPS DN NPS DN NPS DN ¹⁄₈ 6 3¹⁄₂ 90 22 550 44 1100 ¹⁄₄ 8 4 100 24 600 48 1200 ³⁄₄ 10 5 125 26 650 52 1300 ¹⁄₂ 15 6 150 28 700 56 1400 ³⁄₄ 20 8 200 30 750 60 1500 1 25 10 250 32 800 64 1600 1¹⁄₄ 32 12 300 34 850 68 1700 1¹⁄₂ 40 14 350 36 900 72 1800 2 50 16 400 38 950 76 1900 2¹⁄₂ 65 18 450 40 1000 80 2000 3 80 20 500 42 1050 — — Notes: 1. For sizes larger than NPS 80, determine the DN equivalent by multiplying NPS size designation number by 25. without a millimeter symbol. For example, DN 50 is the equivalent designation of NPS 2. Refer to Table A1.1 for NPS and DN pipe size equivalents. Pipe Wall Thickness Schedule is expressed in numbers (5, 5S, 10, 10S, 20, 20S, 30, 40, 40S, 60, 80, 80S, 100, 120, 140, 160). A schedule number indicates the approximate value of the expression 1000 P/S, where P is the service pressure and S is the allowable stress, both expressed in pounds per square inch (psi). The higher the schedule number, the thicker the pipe is. The outside diameter of each pipe size is standardized. Therefore, a particular nominal pipe size will have a different inside diameter depending upon the schedule number specified. Note that the original pipe wall thickness designations of STD, XS, and XXS have been retained; however, they correspond to a certain schedule number de- pending upon the nominal pipe size. The nominal wall thickness of NPS 10 and smaller schedule 40 pipe is same as that of STD. WT. pipe. Also, NPS 8 and smaller schedule 80 pipe has the same wall thickness as XS pipe. The schedule numbers followed by the letter S are per ASME B36.19M, and they are primarily intended for use with stainless steel pipe. The pipe wall thickness specified by a schedule number followed by the letter S may or may not be the same as that specified by a schedule number without the letter S. Refer to ASME B36.19M and ASME B36.10M.10,11 ASME B36.19M does not cover all pipe sizes. Therefore, the dimensional require- ments of ASME B36.10M apply to stainless steel pipe of the sizes and schedules not covered by ASME B36.19M. PIPING CLASSIFICATION It is usual industry practice to classify the pipe in accordance with the pressure- temperature rating system used for classifying flanges. However, it is not essential A.6 PIPING FUNDAMENTALS TABLE A1.2 Piping Class Ratings Based on ASME B16.5 and Corresponding PN Designators Class 150 300 400 600 900 1500 2500 PN 20 50 68 110 150 260 420 Notes: 1. Pressure-temperature ratings of different classes vary with the temperature and the material of con- struction. 2 For pressure-temperature ratings, refer to tables in ASME B16.5, or ASME B16.34. that piping be classified as Class 150, 300, 400, 600, 900, 1500, and 2500. The piping rating must be governed by the pressure-temperature rating of the weakest pressure- containing item in the piping. The weakest item in a piping system may be a fitting made of weaker material or rated lower due to design and other considerations. Table A1.2 lists the standard pipe class ratings based on ASME B16.5 along with corresponding pression nominal (PN) rating designators. Pression nominal is the French equivalent of pressure nominal. In addition, the piping may be classified by class ratings covered by other ASME standards, such as ASME B16.1, B16.3, B16.24, and B16.42. A piping system may be rated for a unique set of pressures and temperatures not covered by any standard. Pression nominal (PN) is the rating designator followed by a designation number, which indicates the approximate pressure rating in bars. The bar is the unit of pressure, and 1 bar is equal to 14.5 psi or 100 kilopascals (kPa). Table A1.2 provides a cross-reference of the ASME class ratings to PN rating designators. It is evident that the PN ratings do not provide a proportional relationship between different PN numbers, whereas the class numbers do. Therefore, it is recommended that class numbers be used to designate the ratings. Refer to Chap. B2 for a more detailed discussion of class rating of piping systems. OTHER PIPE RATINGS Manufacturer’s Rating Based upon a unique or proprietary design of a pipe, fitting, or joint, the manufac- turer may assign a pressure-temperature rating that may form the design basis for the piping system. Examples include Victaulic couplings and the Pressfit system discussed in Chap. A9. In no case shall the manufacturer’s rating be exceeded. In addition, the manufac- turer may impose limitations which must be adhered to. NFPA Ratings The piping systems within the jurisdiction of the National Fire Protection Associa- tion (NFPA) requirements are required to be designed and tested to certain required pressures. These systems are usually rated for 175 psi (1207.5 kPa), 200 psi (1380 kPa), or as specified. INTRODUCTION TO PIPING A.7 AWWA Ratings The American Water Works Association (AWWA) publishes standards and speci- fications, which are used to design and install water pipelines and distribution system piping. The ratings used may be in accordance with the flange ratings of AWWA C207, Steel Pipe Flanges; or the rating could be based upon the rating of the joints used in the piping. Specific or Unique Rating When the design pressure and temperature conditions of a piping system do not fall within the pressure-temperature ratings of above-described rating systems, the designer may assign a specific rating to the piping system. Examples of such applica- tions include main steam or hot reheat piping of a power plant, whose design pressure and design temperature may exceed the pressure-temperature rating of ASME B16.5 Class 2500 flanges. It is normal to assign a specific rating to the piping. This rating must be equal to or higher than the design conditions. The rating of all pressure-containing components in the piping system must meet or exceed the specific rating assigned by the designer. Dual Ratings Sometimes a piping system may be subjected to full-vacuum conditions or sub- merged in water and thus experience external pressure, in addition to withstanding the internal pressure of the flow medium. Such piping systems must be rated for both internal and external pressures at the given temperatures. In addition, a piping system may handle more than one flow medium during its different modes of operation. Therefore, such a piping system may be assigned a dual rating for two different flow media. For example, a piping system may have condensate flowing through it at some lower temperature during one mode of operation while steam may flow through it at some higher temperature during another mode of operation. It may be assigned two pressure ratings at two different temperatures. GENERAL DEFINITIONS Absolute Viscosity. Absolute viscosity or the coefficient of absolute viscosity is a measure of the internal resistance. In the centimeter, gram, second (cgs) or metric system, the unit of absolute viscosity is the poise (abbreviated P), which is equal to 100 centipoise (cP). The English units used to measure or express viscosity are slugs per foot-second or pound force seconds per square foot. Sometimes, the English units are also expressed as pound mass per foot-second or poundal seconds per square foot. Refer to Chap. B8 of this handbook. Adhesive Joint. A joint made in plastic piping by the use of an adhesive substance which forms a continuous bond between the mating surfaces without dissolving either one of them. Refer to Part D of this handbook. Air-Hardened Steel. A steel that hardens during cooling in air from a temperature above its transformation range.1 A.8 PIPING FUNDAMENTALS Alloy Steel. A steel which owes its distinctive properties to elements other than carbon. Steel is considered to be alloy steel when the maximum of the range given for the content of alloying elements exceeds one or more of the following limits2: Manganese 1.65 percent Silicon 0.60 percent Copper 0.60 percent or a definite range or a definite minimum quantity of any of the following elements is specified or required within the limits of the recognized field of constructional alloy steels: Aluminum Nickel Boron Titanium Chromium (up to 3.99 percent) Tungsten Cobalt Vanadium Columbium Zirconium Molybdenum or any other alloying element added to obtain a desired alloying effect. Small quantities of certain elements are unavoidably present in alloy steels. In many applications, these are not considered to be important and are not specified or required. When not specified or required, they should not exceed the follow- ing amounts: Copper 0.35 percent Chromium 0.20 percent Nickel 0.25 percent Molybdenum 0.06 percent Ambient Temperature. The temperature of the surrounding medium, usually used to refer to the temperature of the air in which a structure is situated or a device op- erates. Anchor. A rigid restraint providing substantially full fixation, permitting neither translatory nor rotational displacement of the pipe. Annealing. Heating a metal to a temperature above a critical temperature and holding above that range for a proper period of time, followed by cooling at a suitable rate to below that range for such purposes as reducing hardness, improving machinability, facilitating cold working, producing a desired microstructure, or obtaining desired mechanical, physical, or other properties.3 (A softening treatment is often carried out just below the critical range which is referred to as a subcriti- cal annealing.) Arc Cutting. A group of cutting processes in which the severing or removing of metals is effected by melting with the heat of an arc between an electrode and the base metal (includes carbon, metal, gas metal, gas tungsten, plasma, and air carbon arc cutting). See also Oxygen Cutting. Arc Welding. A group of welding processes in which coalescence is produced by heating with an electric arc or arcs, with or without the application of pressure and with or without the use of filler metal.3,4 INTRODUCTION TO PIPING A.9 Assembly. The joining together of two or more piping components by bolting, welding, caulking, brazing, soldering, cementing, or threading into their installed location as specified by the engineering design. Automatic Welding. Welding with equipment which performs the entire welding operation without constant observation and adjustment of the controls by an opera- tor. The equipment may or may not perform the loading and unloading of the work.3,5 Backing Ring. Backing in the form of a ring that can be used in the welding of piping to prevent weld spatter from entering a pipe and to ensure full penetration of the weld to the inside of the pipe wall. Ball Joint. A component which permits universal rotational movement in a pip- ing system.5 Base Metal. The metal to be welded, brazed, soldered, or cut. It is also referred to as parent metal. Bell-Welded Pipe. Furnace-welded pipe produced in individual lengths from cut- length skelp, having its longitudinal butt joint forge-welded by the mechanical pressure developed in drawing the furnace-heating skelp through a cone-shaped die (commonly known as a welding bell), which serves as a combined forming and welding die. Bevel. A type of edge or end preparation. Bevel Angle. The angle formed between the prepared edge of a member and a plane perpendicular to the surface of the member. See Fig. A1.1. Blank Flange. A flange that is not drilled but is otherwise complete. Blind Flange. A flange used to close the end of a pipe. It produces a blind end which is also known as a dead end. Bond. The junction of the weld metal and the base metal, or the junction of the base metal parts when weld metal is not present. See Fig. A1.2. Branch Connection. The attachment of a branch pipe to the run of a main pipe with or without the use of fittings. Braze Welding. A method of welding whereby a groove, fillet, plug, or slot weld is made using a nonferrous filler metal having a melting point below that of the FIGURE A1.2 Bond between base metal and FIGURE A1.1 Bevel angle. weld metal. A.10 PIPING FUNDAMENTALS base metals, but above 800⬚F. The filler metal is not distributed in the joint by capillary action.5 (Bronze welding, the term formerly used, is a misnomer.) Brazing. A metal joining process in which coalescence is produced by use of a nonferrous filler metal having a melting point above 800⬚F but lower than that of the base metals joined. The filler metal is distributed between the closely fitted surfaces of the joint by capillary action.5 Butt Joint. A joint between two members lying approximately in the same plane.5 Butt Weld. Weld along a seam that is butted edge to edge. See Fig. A1.3. Bypass. A small passage around a large valve for warming up a line. An emergency connection around a reduc- FIGURE A1.3 A circumferential butt- ing valve, trap, etc., to use in case it is welded joint. out of commission. Carbon Steel. A steel which owes its distinctive properties chiefly to the carbon (as distinguished from the other elements) which it contains. Steel is considered to be carbon steel when no minimum content is specified or required for aluminum, boron, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, va- nadium, or zirconium or for any other element added to obtain a desired alloying effect; when the specified minimum for copper does not exceed 0.40 percent; or when the maximum content specified for any of the following elements does not exceed the percentages noted: manganese, 1.65 percent; silicon, 0.60 percent; copper, 0.60 percent.2 Cast Iron. A generic term for the family of high carbon-silicon-iron casting alloys including gray, white, malleable, and ductile iron. Centrifugally Cast Pipe. Pipe formed from the solidification of molten metal in a rotating mold. Both metal and sand molds are used. After casting, if required the pipe is machined, to sound metal, on the internal and external diameters to the surface roughness and dimensional requirements of the applicable material spec- ification. Certificate of Compliance. A written statement that the materials, equipment, or services are in accordance with the specified requirements. It may have to be supported by documented evidence.6 Certified Material Test Report (CMTR ). A document attesting that the material is in accordance with specified requirements, including the actual results of all required chemical analyses, tests, and examinations.6 Chamfering. The preparation of a contour, other than for a square groove weld, on the edge of a member for welding. Cold Bending. The bending of pipe to a predetermined radius at any temperature below some specified phase change or transformation temperature but especially at or near room temperature. Frequently, pipe is bent to a radius of 5 times the nominal pipe diameter. INTRODUCTION TO PIPING A.11 Cold Working. Deformation of a metal plastically. Although ordinarily done at room temperature, cold working may be done at the temperature and rate at which strain hardening occurs. Bending of steel piping at 1300⬚F (704⬚C) would be considered a cold-working operation. Companion Flange. A pipe flange suited to connect with another flange or with a flanged valve or fitting. A loose flange which is attached to a pipe by threading, van stoning, welding, or similar method as distinguished from a flange which is cast integrally with a fitting or pipe. Consumable Insert. Preplaced filler metal which is completely fused into the root of the joint and becomes part of the weld.1 See Fig. A1.4. Continuous-Welded Pipe. Furnace- welded pipe produced in continuous lengths from coiled skelp and subse- quently cut into individual lengths, hav- ing its longitudinal butt joint forge- welded by the mechanical pressure de- veloped in rolling the hot-formed skelp through a set of round pass welding rolls.3 Contractor. The entity responsible for FIGURE A1.4 Consumable insert ring in- furnishing materials and services for fab- serted in pipe joint eccentrically for welding in rication and installation of piping and horizontal position. associated equipment. Control Piping. All piping, valves, and fittings used to interconnect air, gas, or hydraulically operated control apparatus or instrument transmitters and receivers.2 Controlled Cooling. A process of cooling from an elevated temperature in a predetermined manner to avoid hardening, cracking, or internal damage or to produce a desired metallurgical microstructure. This cooling usually follows the final hot-forming or postheating operation. Corner Joint. A joint between two members located approximately at right angles to each other in the form of an L. See Fig. A1.5. Coupling. A threaded sleeve used to connect two pipes. Commercial cou- plings have internal threads to fit exter- FIGURE A1.5 Corner joint. nal threads on pipe. Covered Electrode. A filler metal electrode, used in arc welding, consisting of a metal core wire with a relatively thick covering which provides protection for the molten metal from the atmosphere, improves the properties of the weld metal, and A.12 PIPING FUNDAMENTALS stabilizes the arc. Covered electrodes are extensively used in shop fabrication and field erection of piping of carbon, alloy, and stainless steels. Crack. A fracture-type imperfection characterized by a sharp tip and high ratio of length and depth to opening displacement. Creep or Plastic Flow of Metals. At sufficiently high temperatures, all metals flow under stress. The higher the temperature and stress, the greater the tendency to plastic flow for any given metal. Cutting Torch. A device used in oxygen, air, or powder cutting for controlling and directing the gases used for preheating and the oxygen or powder used for cutting the metal. Defect. A flaw or an imperfection of such size, shape, orientation, location, or properties as to be rejectable per the applicable minimum acceptance standards.7 Density. The density of a substance is the mass of the substance per unit volume. It may be expressed in a variety of units. Deposited Metal. Filler metal that has been added during a welding operation.8 Depth of Fusion. The distance that fu- sion extends into the base metal from the surface melted during welding. See Fig. A1.6. Designer. Responsible for ensuring FIGURE A1.6 Depth of fusion. that the engineering design of piping complies with the requirements of the applicable code and standard and any addi- tional requirements established by the owner. Dew Point. The temperature at which the vapor condenses when it is cooled at constant pressure. Dilatant Liquid. If the viscosity of a liquid increases as agitation is increased at constant temperature, the liquid is termed dilatant. Examples are clay slurries and candy compounds. Discontinuity. A lack of continuity or cohesion; an interruption in the normal physical structure of material or a product.7 Double Submerged Arc-Welded Pipe. Pipe having a longitudinal butt joint pro- duced by at least two passes, one of which is on the inside of the pipe. Coalescence is produced by heating with an electric arc or arcs between the bare metal electrode or electrodes and the work. The welding is shielded by a blanket of granular, fusible material on the work. Pressure is not used, and filler metal for the inside and outside welds is obtained from the electrode or electrodes. Ductile Iron. A cast ferrous material in which the free graphite is in a spheroidal form rather than a fluke form. The desirable properties of ductile iron are achieved by means of chemistry and a ferritizing heat treatment of the castings. INTRODUCTION TO PIPING A.13 Eddy Current Testing. This is a nondestructive testing method in which eddy current flow is induced in the test object. Changes in the flow caused by variations in the object are reflected into a nearby coil or coils for subsequent analysis by suitable instrumentation and techniques. Edge Joint. A joint between the edges of two or more parallel or nearly paral- lel members. Edge Preparation. The contour pre- pared on the edge of a member for weld- ing. See Fig. A1.7. Electric Flash-Welded Pipe. Pipe hav- ing a longitudinal butt joint in which co- alescence is produced simultaneously FIGURE A1.7 Edge preparation. over the entire area of abutting surfaces by the heat obtained from resistance to the flow of electric current between the two surfaces and by the application of pressure after heating is substantially completed. Flashing and upsetting are accom- panied by expulsion of metal from the joint.4 Electric Fusion-Welded Pipe. Pipe having a longitudinal or spiral butt joint in which coalescence is produced in the preformed tube by manual or automatic electric arc welding. The weld may be single or double and may be made with or without the use of filler metal.4 Electric Resistance-Welded Pipe. Pipe produced in individual lengths or in contin- uous lengths from coiled skelp and subsequently cut into individual lengths having a longitudinal butt joint in which coalescence is produced by the heat obtained from resistance of the pipe to the flow of electric current in a circuit of which the pipe is a part and by the application of pressure.3 Electrode. See Covered Electrode. End Preparation. The contour prepared on the end of a pipe, fitting, or nozzle for welding. The particular preparation is prescribed by the governing code. Refer to Chap. A6 of this handbook. Engineering Design. The detailed design developed from process requirements and conforming to established design criteria, including all necessary drawings and specifications, governing a piping installation.5 Equipment Connection. An integral part of such equipment as pressure vessels, heat exchangers, pumps, etc., designed for attachment of pipe or piping components.8 Erection. The complete installation of a piping system, including any field assem- bly, fabrication, testing, and inspection of the system.5 Erosion. Destruction of materials by the abrasive action of moving fluids, usually accelerated by the presence of solid particles.9 Examination. The procedures for all visual observation and nondestructive testing.5 A.14 PIPING FUNDAMENTALS Expansion Joint. A flexible piping component which absorbs thermal and/or terminal movement.5 Extruded Nozzles. The forming of nozzle (tee) outlets in pipe by pulling hemi- spherically or conically shaped dies through a circular hole from the inside of the pipe. Although some cold extruding is done, it is generally performed on steel after the area to be shaped has been heated to temperatures between 2000 and 1600⬚F (1093 and 871⬚C). Extruded Pipe. Pipe produced from hollow or solid round forgings, usually in a hydraulic extrusion press. In this process the forging is contained in a cylindrical die. Initially a punch at the end of the extrusion plunger pierces the forging. The extrusion plunger then forces the contained billet between the cylindrical die and the punch to form the pipe, the latter acting as a mandrel. One variation of this process utilizes autofrettage (hydraulic expansion) and heat treatment, above the recrystallization temperature of the material, to produce a wrought structure. Fabrication. Primarily, the joining of piping components into integral pieces ready for assembly. It includes bending, forming, threading, welding, or other operations upon these components, if not part of assembly. It may be done in a shop or in the field.5 Face of Weld. The exposed surface of a weld on the side from which the welding was done.5,8 Filler Metal. Metal to be added in welding, soldering, brazing, or braze welding.8 Fillet Weld. A weld of an approximately triangular cross section joining two surfaces approximately at right angles to each other in a lap joint, tee joint, corner joint, or socket weld.5 See Fig. A1.8. Fire Hazard. Situation in which a material of more than average combustibility or explodibility exists in the presence of a potential ignition source.5 Flat-Land Bevel. A square extended root face preparation extensively used in inert-gas, root-pass welding of piping. See Fig. A1.9. FIGURE A1.8 Fillet weld. FIGURE A1.9 Flat-land bevel. INTRODUCTION TO PIPING A.15 FIGURE A1.10 Welding in the flat position. Flat Position. The position of welding which is performed from the upper side of the joint, while the face of the weld is approximately horizontal. See Fig. A1.10. Flaw. An imperfection of unintentional discontinuity which is detectable by a nondestructive examination.7 Flux. Material used to dissolve, prevent accumulation of, or facilitate removal of oxides and other undesirable substances during welding, brazing, or soldering. Flux-Cored Arc Welding (FCAW ). An arc welding process that employs a contin- uous tubular filler metal (consumable) electrode having a core of flux for shielding. Adding shielding may or may not be obtained from an externally supplied gas or gas mixture. Forge Weld. A method of manufacture similar to hammer welding. The term forge welded is applied more particularly to headers and large drums, while hammer welded usually refers to pipe. Forged and Bored Pipe. Pipe produced by boring or trepanning of a forged billet. Full-Fillet Weld. A fillet weld whose size is equal to the thickness of the thinner member joined.8 Fusion. The melting together of filler and base metal, or of base metal only, which results in coalescence.8 Fusion Zone. The area of base metal melted as determined on the cross sec- tion of a weld. See Fig. A1.11. Galvanizing. A process by which the FIGURE A1.11 Fusion zone is the section of surface of iron or steel is covered with the parent metal which melts during the weld- a layer of zinc. ing process. Gas Metal Arc Welding (GMAW ). An arc welding process that employs a contin- uous solid filler metal (consumable) electrode. Shielding is obtained entirely from an externally supplied gas or gas mixture.4,8 (Some methods of this process have been called MIG or CO2 welding.) Gas Tungsten Arc Welding (GTAW ). An arc welding process that employs a tungsten (nonconsumable) electrode. Shielding is obtained from a gas or gas mix- A.16 PIPING FUNDAMENTALS ture. Pressure may or may not be used, and filler metal may or may not be used. (This process has sometimes been called TIG welding.) When shielding is obtained by the use of an inert gas such as helium or argon, this process is called inert-gas tungsten arc welding.8 Gas Welding. Welding process in which coalescence is produced by heating with a gas flame or flames, with or without the application of pressure and with or without the use of filler metal.4 Groove. The opening provided for a groove weld. Groove Angle. The total included angle of the groove between parts to be joined by a groove weld. See Fig. A1.12. FIGURE A1.12 The groove angle is twice the bevel angle. FIGURE A1.13 A groove face. Groove Face. That surface of a member included in the groove. See Fig. A1.13. Groove Radius. The radius of a J or U groove. See Fig. A1.14. Groove Weld. A weld made in the groove between two members to be joined. The standard type of groove welds are square, single-V, single-bevel, single-U, single-J, double-V, double-U, double-bevel, double-J, and flat-land single, and dou- ble-V groove welds. See Fig. A1.15 for a typical groove weld. FIGURE A1.14 A groove radius. FIGURE A1.15 Groove weld. Hammer Weld. Method of manufacturing large pipe (usually NPS 20 or DN 500 and larger) by bending a plate into circular form, heating the overlapped edges to a welding temperature, and welding the longitudinal seam with a power hammer applied to the outside of the weld while the inner side is supported on an over- hung anvil. Hangers and Supports. Hangers and supports include elements which transfer the load from the pipe or structural attachment to the supporting structure or equipment. They include hanging-type fixtures such as hanger rods, spring hangers, sway braces, counterweights, turnbuckles, struts, chains, guides, and anchors and bearing-type fixtures such as saddles, bases, rollers, brackets, and sliding supports.5 Refer to Chap. B5 of this handbook. INTRODUCTION TO PIPING A.17 Header. A pipe or fitting to which a number of branch pipes are connected. Heat-Affected Zone. That portion of the base metal which has not been melted but whose mechanical properties or microstructure has been altered by the heat of welding or cutting.8 See Fig. A1.16. FIGURE A1.17 Horizontal position fillet FIGURE A1.16 Welding zones. weld. Heat Fusion Joint. A joint made in thermoplastic piping by heating the parts sufficiently to permit fusion of the materials when the parts are pressed together. Horizontal Fixed Position. In pipe welding, the position of a pipe joint in which the axis of the pipe is approximately horizontal and the pipe is not rotated during the operation. Horizontal-Position Fillet Weld. Welding is performed on the upper side of an approximately horizontal surface and against an approximately vertical surface. See Fig. A1.17. Horizontal-Position Groove Weld. The position of welding in which the weld axis lies in an approximately horizontal plane and the face of the weld lies in an approximately vertical plane. See Fig. A1.18. FIGURE A1.18 Horizontal position groove weld. FIGURE A1.19 Horizontal rolled position. Horizontal Rolled Position. The position of a pipe joint in which welding is performed in the flat position by rotating the pipe. See Fig. A1.19. Hot Bending. Bending of piping to a predetermined radius after heating to a suitably high temperature for hot working. On many pipe sizes, the pipe is firmly packed with sand to avoid wrinkling and excessive out-of-roundness. Hot Taps. Branch piping connections made to operating pipelines, mains, or other facilities while they are in operation. A.18 PIPING FUNDAMENTALS Hot Working. The plastic deformation of metal at such a temperature and rate that strain hardening does not occur. Extruding or swaging of chrome-moly piping at temperatures between 2000 and 1600⬚F (1093 and 871⬚C) would be considered hot-forming or hot-working operations. Hydraulic Radius. The ratio of area of flowing fluid to the wetted perimeter. Impact Test. A test to determine the behavior of materials when subjected to high rates of loading, usually in bending, tension, or torsion. The quantity measured is the energy absorbed in breaking the specimen by a single blow, as in Charpy or Izod tests. Imperfection. A condition of being imperfect; a departure of a quality characteris- tic from its intended condition.5 Incomplete Fusion. Fusion which is less than complete and which does not result in melting completely through the thickness of the joint. Indication. The response or evidence from the application of a nondestructive ex- amination.5 Induction Heating. Heat treatment of completed welds in piping by means of placing induction coils around the piping. This type of heating is usually performed during field erection in those cases where stress relief of carbon- and alloy-steel field welds is required by the applicable code. Inspection. Activities performed by an authorized inspector to verify whether an item or activity conforms to specified requirements. Instrument Piping. All piping, valves, and fittings used to connect instruments to main piping, to other instruments and apparatus, or to measuring equipment.2 Interpass Temperature. In a multiple-pass weld, the minimum or maximum tem- perature of the deposited weld metal before the next pass is started. Interrupted Welding. Interruption of welding and preheat by allowing the weld area to cool to room temperature as generally permitted on carbon-steel and on chrome-moly alloy-steel piping after sufficient weld passes equal to at least one- third of the pipe wall thickness or two weld layers, whichever is greater, have been deposited. Joint. A connection between two lengths of pipe or between a length of pipe and a fitting. Joint Penetration. The minimum depth a groove weld extends from its face into a joint, exclusive of reinforce- ment.5 See Fig. A1.20. Kinematic Viscosity. The ratio of the absolute viscosity to the mass density. FIGURE A1.20 Weld joint penetration. In the metric system, kinematic viscosity is measured in strokes or square centimeters per second. Refer to Chap. B8 of this handbook. INTRODUCTION TO PIPING A.19 Laminar Flow. Fluid flow in a pipe is usually considered laminar if the Reynolds number is less than 2000. Depending upon many possible varying conditions, the flow may be laminar at a Reynolds number as low as 1200 or as high as 40,000; however, such conditions are not experienced in normal practice. Lap Weld. Weld along a longitudinal seam in which one part is overlapped by the other. A term used to designate pipe made by this process. Lapped Joint. A type of pipe joint made by using loose flanges on lengths of pipe whose ends are lapped over to give a bearing surface for a gasket or metal-to- metal joint. Liquid Penetrant Examination or Inspection. This is a nondestructive examina- tion method for finding discontinuities that are open to the surface of solid and essentially nonporous materials. This method is based on capillary action or capillary attraction by which the surface of a liquid in contact with a solid is elevated or depressed. A liquid penetrant, usually a red dye, is applied to the clean surface of the specimen. Time is allowed for the penetrant to seep into the opening. The excess penetrant is removed from the surface. A developer, normally white, is applied to aid in drawing the penetrant up or out to the surface. The red penetrant is drawn out of the discontinuity, which is located by the contrast and distinct appearance of the red penetrant against the white background of the developer. Local Preheating. Preheating of a specific portion of a structure. Local Stress-Relief Heat Treatment. Stress-relief heat treatment of a specific portion of a weldment. This is done extensively with induction coils, resistance coils, or propane torches in the field erection of steel piping. Machine Welding. Welding with equipment which performs the welding operation under the observation and control of an operator. The equipment may or may not perform the loading and unloading of the work. Magnetic Particle Examination or Inspection. This is a nondestructive examina- tion method to locate surface and subsurface discontinuities in ferromagnetic materi- als. The presence of discontinuities is detected by the use of finely divided ferromag- netic particles applied over the surface. Some of these magnetic particles are gathered and held by the magnetic leakage field created by the discontinuity. The particles gathered at the surface form an outline of the discontinuity and generally indicate its location, size, shape, and extent. Malleable Iron. Cast iron which has been heat-treated in an oven to relieve its brittleness. The process somewhat improves the tensile strength and enables the material to stretch to a limited extent without breaking. Manual Welding. Welding wherein the entire welding operation is performed and controlled by hand.5 Mean Velocity of Flow. Under steady state of flow, the mean velocity of flow at a given cross section of pipe is equal to the rate of flow Q divided by the area of cross section A. It is expressed in feet per second or meters per second. A.20 PIPING FUNDAMENTALS where v ⫽ mean velocity of flow, in feet per second, ft/s (meters per second, m/s) Q ⫽ rate of flow, in cubic feet per second, ft3 /s (cubic meters per second, m3 /s) A ⫽ area of cross section, in square feet, ft2 (square meters, m2) Mechanical Joint. A joint for the purpose of mechanical strength or leak resistance or both, where the mechanical strength is developed by threaded, grooved, rolled, flared, or flanged pipe ends or by bolts, pins, and compounds, gaskets, rolled ends, caulking, or machined and mated surfaces. These joints have particular application where ease of disassembly is desired.5 Mill Length. Also known as random length. The usual run-of-mill pipe is 16 to 20 ft (5 to 6 m) in length. Line pipe and pipe for power plant use are sometimes made in double lengths of 30 to 35 ft (10 to 12 m). Miter. Two or more straight sections of pipe matched and joined on a line bisecting the angle of junction so as to produce a change in direction.4 Newtonian Liquid. A liquid is called newtonian if its viscosity is unaffected by the kind and magnitude of motion or agitation to which it may be subjected, as long as the temperature remains constant. Water and mineral oil are examples of newtonian liquids. Nipple. A piece of pipe less than 12 in (0.3 m) long that may be threaded on both ends or on one end and provided with ends suitable for welding or a mechanical joint. Pipe over 12 in (0.3 m) long is regarded as cut pipe. Common types of nipples are close nipple, about twice the length of a standard pipe thread and without any shoulder; shoulder nipple, of any length and having a shoulder between the pipe threads; short nipple, a shoulder nipple slightly longer than a close nipple and of a definite length for each pipe size which conforms to manufacturer’ standard; long nipple, a shoulder nipple longer than a short nipple which is cut to a specific length. Nominal Diameter (DN ). A dimensionless designator of pipe in metric system. It indicates standard pipe size when followed by the specific size designation number without the millimeter symbol (for example, DN 40, DN 300). Nominal Pipe Size (NPS ). A dimensionless designator of pipe. It indicates stan- dard pipe size when followed by the specific size designation number without an inch symbol (for example, NPS 1¹⁄₂, NPS 12).2 Nominal Thickness. The thickness given in the product material specification or standard to which manufacturing tolerances are applied.5 Nondestructive Examination or Inspection. Inspection by methods that do not destroy the item, part, or component to determine its suitability for use. Normalizing. A process in which a ferrous metal is heated to a suitable tempera- ture above the transformation range and is subsequently cooled in still air at room temperature.5 INTRODUCTION TO PIPING A.21 Nozzle. As applied to piping, this term usually refers to a flanged connection on a boiler, tank, or manifold consisting of a pipe flange, a short neck, and a welded attachment to the boiler or other vessel. A short length of pipe, one end of which is welded to the vessel with the other end chamfered for butt welding, is also referred to as a welding nozzle. Overhead Position. The position of welding performed from the underside of the joint. Oxidizing Flame. An oxyfuel gas flame having an oxidizing effect caused by excess oxygen. Oxyacetylene Cutting. An oxygen-cutting process in which metals are severed by the chemical reaction of oxygen with the base metal at elevated temperatures. The necessary temperature is maintained by means of gas flames obtained from the combustion of acetylene with oxygen. Oxyacetylene Welding. A gas welding process in which coalescence is produced by heating with a gas flame or flames obtained from the combustion of acetylene with oxygen, with or without the addition of filler metal. Oxyfuel Gas Welding (OFGW ). A group of welding processes in which coales- cence is produced by heating with a flame or flames obtained from the combustion of fuel gas with oxygen, with or without the application of pressure and with or without the use of filler metal. Oxygen Cutting (OC ). A group of cutting processes used to sever or remove metals by means of the reaction of oxygen with the base metal at elevated tempera- tures. In the case of oxidation-resistant metals, the reaction is facilitated by use of a chemical flux or metal powder.8 Oxygen Gouging. An application of oxygen cutting in which a chamfer or groove is formed. Pass. A single progression of a welding or surfacing operation along a joint, weld deposit, or substrate. The result of a pass is a weld bead, layer, or spray deposit.8 Peel Test. A destructive method of examination that mechanically separates a lap joint by peeling.8 Peening. The mechanical working of metals by means of hammer blows. Pickle. The chemical or electrochemical removal of surface oxides. Following welding operations, piping is frequently pickled in order to remove mill scale, oxides formed during storage, and the weld discolorations. Pipe. A tube with a round cross section conforming to the dimensional require- ments for nominal pipe size as tabulated in ASME B36.10M and ASME B36.19M. For special pipe having diameter not listed in the above-mentioned standards, the nominal diameter corresponds to the outside diameter.5 Pipe Alignment Guide. A restraint in the form of a sleeve or frame that permits the pipeline to move freely only along the axis of the pipe.8 A.22 PIPING FUNDAMENTALS Pipe Supporting Fixtures. Elements that transfer the load from the pipe or struc- tural attachment to the support structure or equipment.8 Pipeline or Transmission Line. A pipe installed for the purpose of transmitting gases, liquids, slurries, etc., from a source or sources of supply to one or more distribution centers or to one or more large-volume customers; a pipe installed to interconnect source or sources of supply to one or more distribution centers or to one or more large-volume customers; or a pipe installed to interconnect sources of supply.2 Piping System. Interconnected piping subject to the same set or sets of design con- ditions.1 Plasma Cutting. A group of cutting processes in which the severing or removal of metals is effected by melting with a stream of hot ionized gas.1 Plastic. A material which contains as an essential ingredient an organic substance of high to ultrahigh molecular weight, is solid in its finished state, and at some stage of its manufacture or processing can be shaped by flow. The two general types of plastic are thermoplastic and thermosetting. Polarity. The direction of flow of current with respect to the welding electrode and workpiece. Porosity. Presence of gas pockets or voids in metal. Positioning Weld. A weld made in a joint which has been so placed as to facilitate the making of the weld. Postheating. The application of heat to a fabricated or welded section subsequent to a fabrication, welding, or cutting operation. Postheating may be done locally, as by induction heating; or the entire assembly may be postheated in a furnace. Postweld Heat Treatment. Any heat treatment subsequent to welding.5 Preheating. The application of heat to a base metal immediately prior to a welding or cutting operation.5 Pressure. The force per unit that is acting on a real or imaginary surface within a fluid is the pressure or intensity of pressure. It is expressed in pounds per square inch: where p ⫽ absolute pressure at a point, psi (kg/cm2) w ⫽ specific weight, lb/ft3 (kg/m3) h ⫽ height of fluid column above the point, ft (m) pa ⫽ atmospheric pressure, psi (kg/cm2) INTRODUCTION TO PIPING A.23 The gauge pressure at a point is obtained by designating atmospheric pressure as zero: where p ⫽ gauge pressure. To obtain absolute pressure from gauge pressure, add the atmospheric pressure to the gauge pressure. Pressure Head. From the definition of pressure, the expression p/w is the pressure head. It can be defined as the height of the fluid above a point, and it is normally measured in feet. Purging. The displacement during welding, by an inert or neutral gas, of the air inside the piping underneath the weld area in order to avoid oxidation or contamination of the underside of the weld. Gases most commonly used are argon, helium, and nitrogen (the last is principally limited to austenitic stainless steel). Purging can be done within a complete pipe section or by means of purging fixtures of a small area underneath the pipe weld. Quenching. Rapid cooling of a heated metal. Radiographic Examination or Inspection. Radiography is a nondestructive test method which makes use of short-wavelength radiations, such as X-rays or gamma rays, to penetrate objects for detecting the presence and nature of macroscopic defects or other structural discontinuities. The shadow image of defects or disconti- nuities is recorded either on a fluorescent screen or on photographic film. Reinforcement. In branch connections, reinforcement is material around a branch opening that serves to strengthen it. The material is either integral in the branch components or added in the form of weld metal, a pad, a saddle, or a sleeve. In welding, reinforcement is weld metal in excess of the specified weld size. Reinforcement Weld. Weld metal on the face of a groove weld in excess of the metal necessary for the specified weld size.5 Repair. The process of physically restoring a nonconformance to a condition such that an item complies with the applicable requirements, including the code require- ments.6 Resistance Weld. Method of manufacturing pipe by bending a plate into circular form and passing electric current through the material to obtain a welding temper- ature. Restraint. A structural attachment, device, or mechanism that limits movement of the pipe in one or more directions.8 Reverse Polarity. The arrangement of direct-current arc welding leads with the work as the negative pole and the electrode as the positive pole of the welding arc; a synonym for direct-current electrode positive.8 A.24 PIPING FUNDAMENTALS Reynolds Number. A dimensionless number. It is defined as the ratio of the dynamic forces of mass flow to the shear stress due to viscosity. It is expressed as where R ⫽ Reynolds number v ⫽ mean velocity of flow, ft/s (m/s) ␳ ⫽ weight density of fluid, lb/ft3 (kg/m3) D ⫽ internal diameter of pipe, ft (m) 애 ⫽ absolute viscosity, in pound mass per foot second [lbm/(ft · s)] or poundal seconds per square foot (centipoise) Rolled Pipe. Pipe produced from a forged billet which is pierced by a conical mandrel between two diametrically opposed rolls. The pierced shell is subsequently rolled and expanded over mandrels of increasingly large diameter. Where closer dimensional tolerances are desired, the rolled pipe is cold- or hot-drawn through dies and then machined. One variation of this process produces the hollow shell by extrusion of the forged billet over a mandrel in a vertical, hydraulic piercing press. Root Edge. A root face of zero width. Root Face. That portion of the groove face adjacent to the root of the joint. This portion is also referred to as the root land. See Fig. A1.21. FIGURE A1.21 Nomenclature at joint of groove weld. Root of Joint. That portion of a joint to be welded where the members to be joined come closest to each other. In cross section, the root of a joint may be a point, a line, or an area. See Fig. A1.21. Root Opening. The separation, between the members to be joined, at the root of the joint.5 See Fig. A1.21. Root Penetration. The depth which a groove weld extends into the root of a joint as measured on the centerline of the root cross section. Sometimes welds are considered unacceptable if they show incomplete penetration. See Fig. A1.21. INTRODUCTION TO PIPING A.25 Root Reinforcement. Weld reinforcement at the side other than that from which the welding was done. Root Surface. The exposed surface of a weld on the side other than that from which the welding was done. Run. The portion of a fitting having its end in line, or nearly so, as distinguished from branch connections, side outlets, etc. Saddle Flange. Also known as tank flange or boiler flange. A curved flange shaped to fit a boiler, tank, or other vessel and to receive a threaded pipe. A saddle flange is usually riveted or welded to the vessel. Sample Piping. All piping, valves, and fittings used for the collection of samples of gas, steam, water, oil, etc.2 Sargol. A special type of joint in which a lip is provided for welding to make the joint fluid tight, while mechanical strength is provided by bolted flanges. The Sargol joint is used with both Van Stone pipe and fittings. Sarlun. An improved type of Sargol joint. Schedule Numbers. Approximate values of the expression 1000P/S, where P is the service pressure and S is the allowable stress, both expressed in pounds per square inch. Seal Weld. A fillet weld used on a pipe joint primarily to obtain fluid tightness as opposed to mechanical strength; usually used in conjunction with a threaded joint.8 Seamless Pipe. A wrought tubular product made without a welded seam. It is manufactured by hot-working steel or, if necessary, by subsequently cold-finishing the hot-worked tubular product to produce the desired shape, dimensions, and prop- erties. Semiautomatic Arc Welding. Arc welding with equipment which controls only the filler metal feed. The advance of the welding is manually controlled.3 Semisteel. A high grade of cast iron made by the addition of steel scrap to pip iron in a cupola or electric furnace. More correctly described as high-strength gray iron. Service Fitting. A street ell or street tee having a male thread at one end. Shielded Metal Arc Welding (SMAW ). An arc welding process in which coales- cence is produced by heating with an electric arc between a covered metal electrode and the work. Shielding is obtained from decomposition of the electrode covering. Pressure is not used, and filler metal is obtained from the electrode.8 Shot Blasting. Mechanical removal of surface oxides and scale on the pipe inner and outer surfaces by the abrasive impingement of small steel pellets. A.26 PIPING FUNDAMENTALS Single-Bevel-, Single-J, Single-U, Single-V-Groove Welds. All are specific types of groove welds and are illustrated in Fig. A1.22. FIGURE A1.22 Groove welds. (a) Single-bevel; (b) single-J; (c) double-U; (d) double-V. Single-Welded Butt Joint. A butt joint welded from one side only.8 Size of Weld. For a groove weld, the joint penetration, which is the depth of chamfering plus the root penetration. See Fig. A1.21. For fillet welds, the leg length of the largest isosceles right triangle which can be inscribed within the fillet-weld cross section. See Fig. A1.23. FIGURE A1.23 Size of weld (a) in fillet weld of equal legs and (b) in fillet weld of unequal legs. Skelp. A piece of plate prepared by forming and bending, ready for welding into pipe. Flat plates when used for butt-welded pipe are called skelp. Slag Inclusion. Nonmetallic solid material entrapped in weld metal or between weld metal.8 Slurry. A two-phase mixture of solid particles in an aqueous phase.9 Socket Weld. Fillet-type seal weld used to join pipe to valves and fittings or to other sections of pipe. Generally used for piping whose nominal diameter is NPS 2 (DN 50) or smaller. INTRODUCTION TO PIPING A.27 Soldering. A metal-joining process in which coalescence is produced by heating to a suitable temperature and by using a nonferrous alloy fusible at temperatures below that of the base metals being joined. The filler metal is distributed between closely fitted surfaces of the joint by capillary action.5 Solution Heat Treatment. Heating an alloy to a suitable temperature, holding at that temperature long enough to allow one or more constituents to enter into solid solution, and then cooling rapidly enough to hold the constituents in solution. Solvent Cement Joint. A joint made in thermoplastic piping by the use of a solvent or solvent cement which forms a continuous bond between the mating surfaces. Source Nipple. A short length of heavy-walled pipe between high-pressure mains and the first valve of bypass, drain, or instrument connections. Spatter. In arc and gas welding, the metal particles expelled during welding that do not form part of the weld.8 Spatter Loss. Difference in weight between the amount of electrode consumed and the amount of electrode deposited. Specific Gravity. The ratio of its weight to the weight of an equal volume of water at standard conditions. Specific Volume. The volume of a unit mass of a fluid is its specific volume, and it is measured in cubic feet per pound mass (ft3 /lbm). Specific Weight. The weight of a unit volume of a fluid is its specific weight. In English units, it is expressed in pounds per cubic foot (lb/ft3). Spiral-Riveted. A method of manufacturing pipe by coiling a plate into a helix and riveting together the overlapped edges. Spiral-Welded. A method of manufacturing pipe by coiling a plate into a helix and fusion-welding the overlapped or abutted edges. Spiral-Welded Pipe. Pipe made by the electric-fusion-welded process with a butt joint, a lap joint, or a lock-seam joint. Square-Groove Weld. A groove weld in which the pipe ends are not chamfered. Square-groove welds are generally used on piping and tubing of wall thickness no greater than ¹⁄₈ in (3 mm). Stainless Steel. An alloy steel having unusual corrosion-resisting properties, usu- ally imparted by nickel and chromium. Standard Dimension Ratio (SDR ). The ratio of outside pipe diameter to wall thickness of thermoplastic pipe. It is calculated by dividing the specified outside diameter of the pipe by the specified wall thickness in inches. Statically Cast Pipe. Pipe formed by the solidification of molten metal in a sand mold. A.28 PIPING FUNDAMENTALS Straight Polarity. The arrangement of direct-current arc welding leads in which the work is the positive pole and the electrode is the negative pole of the welding arc; a synonym for direct-current electrode negative. Stress Relieving. Uniform heating of a structure or portion thereof to a sufficient temperature to relieve the major portion of the residual stresses, followed by uni- form cooling.5 Stringer Bead. A type of weld bead made by moving the electrode in a direction essentially parallel to the axis of the bead. There is no appreciable transverse oscillation of the electrode. The deposition of a number of string beads is known as string beading and is used extensively in the welding of austenitic stainless-steel materials. See also Weave Bead. Structural Attachments. Brackets, clips, lugs, or other elements welded, bolted, or clamped to the pipe support structures, such as stanchions, towers, building frames, and foundation. Equipment such as vessels, exchangers, and pumps is not considered to be pipe-supporting elements. Submerged Arc Welding (SAW ). An arc welding process that produces coales- cence of metals by heating them with an arc or arcs drawn between a bare metal electrode or electrodes and the base metals. The arc is shielded by a blanket of granular fusible material. Pressure is not used, and filler metal is obtained from the electrode and sometimes from a supplementary welding rod, flux, or metal granules. Supplemental Steel. Structural members that frame between existing building framing steel members and are significantly smaller than the existing steel.8 Swaging. Reducing the ends of pipe and tube sections with rotating dies which are pressed intermittently against the pipe or tube end. Swivel Joint. A joint which permits single-plane rotational movement in a pip- ing system. Tack Weld. A small weld made to hold parts of a weldment in proper alignment until the final welds are made. Tee Joint. A welded joint between two members located approximately at right angles to each other in the form of a T. Tempering. A process of heating a normalized or quench-hardened steel to a temperature below the transformation range and, from there, cooling at any rate desired. This operation is also frequently called stress relieving. Testing. An element of verification for the determination of the capability of an item to meet specified requirements by subjecting the item to a set of physical, chemical, environmental, or operating conditions.6 Thermoplast

Tags

piping engineering handbook mechanical engineering
Use Quizgecko on...
Browser
Browser