Number System Examples PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document provides examples of converting between different number systems, including decimal, binary, and hexadecimal. It demonstrates how to convert numbers from one system to another and includes practice problems.
Full Transcript
1, convert the following binary numbers to decimal equivalents: A, 001100 B, 000011 C, 011100 D, 111100 E, 111111 Answer For the binary representation of y = {...b2 b1b0.b−1b−2 b−3...} , the value of Y is i y= bi × 2 i A, 001100 = 0 × 2 5 + 0 × 2 4 + 1 × 2 3 + 1...
1, convert the following binary numbers to decimal equivalents: A, 001100 B, 000011 C, 011100 D, 111100 E, 111111 Answer For the binary representation of y = {...b2 b1b0.b−1b−2 b−3...} , the value of Y is i y= bi × 2 i A, 001100 = 0 × 2 5 + 0 × 2 4 + 1 × 2 3 + 1 × 2 2 + 0 × 21 + 0 × 2 0 = 8 + 4 = 12 5 4 3 2 1 0 B, 000011 = 0 × 2 + 0 × 2 + 0 × 2 + 0 × 2 + 1 × 2 + 1 × 2 = 2 + 1 = 3 5 4 3 2 1 0 C, 011100 = 0 × 2 + 1 × 2 + 1 × 2 + 1 × 2 + 0 × 2 + 0 × 2 = 16 + 8 + 4 = 28 5 4 3 2 1 0 D, 111100 = 1 × 2 + 1 × 2 + 1 × 2 + 1 × 2 + 0 × 2 + 0 × 2 = 32 + 16 + 8 = 60 5 4 3 2 1 0 E, 111111 = 1 × 2 + 1 × 2 + 1 × 2 + 1 × 2 + 1 × 2 + 1 × 2 = 32 + 16 + 8 + 4 + 2 + 1 = 63 2, Convert the following binary numbers to their decimal equivalents: A, 11100.001 B, 110011.10011 C, 101010101010.1 Answer For the binary representation of y = {...b2 b1b0.b−1b−2 b−3...} , the value of Y is i y= bi × 2 i A, 11100.001= 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 0 × 21 + 0 × 2 0 + 0 × 2 −1 + 0 × 2 −2 + 1 × 2 −3 = 28 + 0.125 = 28.125 B, 110011.10011= 1 × 2 5 + 1 × 2 4 + 0 × 2 3 + 0 × 2 2 + 1 × 21 + 1 × 2 0 + 1 × 2 −1 + 0 × 2 −2 + 0 × 2 −3 + 1 × 2 −4 + 1 × 2 −5 = 51 + 0.5 + 0.0625 + 0.03125 = 51.59375 C, 101010101010.1= 1 × 211 + 1 × 2 9 + 1 × 2 7 + 1 × 2 5 + 1 × 2 3 + 1 × 21 + 1 × 2 −1 = 2048 + 512 + 128 + 32 + 8 + 2 + 0.5 = 2730.5 3, Convert the following decimal numbers to their binary equivalents A, 64 B, 128 C, 256 D, 100 E, 111 F, 145 G, 255 Answer A, Quotient Remainder 64/2 32 0 32/2 16 0 16/2 8 0 8/2 4 0 4/2 2 0 2/2 1 0 1/2 0 1 6410 = 1000000 2 B, 12810 = 10000000 2 C, 25610 = 100000000 2 D, Quotient Remainder 100/2 50 0 50/2 25 0 25/2 12 1 12/2 6 0 6/2 3 0 3/2 1 1 1/2 0 1 10010 = 1100100 2 E, Quotient Remainder 111/2 55 1 55/2 27 1 27/2 13 1 13/2 6 1 6/2 3 0 3/2 1 1 1/2 0 1 11110 = 11011112 F, 4510 = 100100012 G, 255 Quotient Remainder 255/2 127 1 127/2 63 1 63/2 31 1 31/2 15 1 15/2 7 1 7/2 3 1 3/2 1 1 1/2 0 1 25510 = 111111112 4, Convert the following decimal numbers to their binary equivalents A, 34.75 B, 25.25 C, 27.1875 A, 34.75 the integer part (34) convert to binary format Quotient Remainder 34/2 17 0 17/2 8 1 8/2 4 0 4/2 2 0 2/2 1 0 1/2 0 1 3410 = 100010 2 the fraction part (0.75) covert to binary format product integer part 0.75x2 1.5 1 0.5x2 1.0 1 0.7510 = 0.112 34.7510 = 100010.112 B, 25.25 the integer part is 25, convert to binary format Quotient Remainder 25/2 12 1 12/2 6 0 6/2 3 0 3/2 1 1 1/2 0 1 2510 = 110012 the fraction part is 0.25, convert to binary format product integer part 0.25x2 0.5 0 0.5x2 1.0 1 => 0.01 0.2510 = 0.012 25.2510 = 11001.012 C, 27.1875 the integer part is 27, convert to binary format Quotient Remainder 27/2 13 1 13/2 6 1 6/2 3 0 3/2 1 1 1/2 0 1 2710 = 110112 the fraction part is 0.1875, convert to binary format product integer part 0.1875x2 0.375 0 0.375x2 0.75 0 0.75x2 1.5 1 0.5x2 1.0 1 0.187510 = 0.00112 27.187510 = 11011.00112 5, Convert the following hexadecimal number to their decimal equivalents a, C b, 9F c, B52 d, F117 e, ABCD f, 1111.1 g, 888.8 h, EBA.C Answer For the hexadecimal representation of y = {...x 2 x1 x0.x −1 x − 2 x −3...} , the value of Y is i y= xi × 16 i a, C = 12 × 16 0 = 12 1 0 b, 9F= 9 × 16 + 15 × 16 = 159 2 1 0 c, B52 = 11 × 16 + 5 × 16 + 2 × 16 = 2898 3 2 1 0 d, F117 = 15 × 16 + 1 × 16 + 1 × 16 + 7 × 16 = 61719 3 2 1 0 e, ABCD = 10 × 16 + 11 × 16 + 12 × 16 + 13 × 16 = 43981 3 2 1 0 −1 f, 1111.1 = 1 × 16 + 1 × 16 + 1 × 16 + 1 × 16 + 1 × 16 = 4369.0625 2 1 0 −1 g, 888.8 = 8 × 16 + 8 × 16 + 8 × 16 + 8 × 16 = 2184.5 2 1 0 −1 h, EBA.C 14 × 16 + 11 × 16 + 10 × 16 + 12 × 16 = 3770.75 6, Convert the following decimal numbers to their hexadecimal equivalents a, 80 Quotient Remainder 80/16 5 0 5/16 0 5 8010 = 5016 b, 2560 Quotient Remainder 2560/16 160 0 160/16 10 0 10/16 0 10 256010 = A0016 c, 65536 Quotient Remainder 65536/16 4096 0 4096/16 256 0 256/16 16 0 16/16 1 0 1/16 0 1 6553610 = 1000016 d, 204.125 the integer part 204, convert to hexadecimal format Quotient Remainder 204/16 12 12 12/16 0 12 20410 = CC16 the fraction part 0.125, convert to hexadecimal format product integer part 0.125x16 2.0 2 0.12510 = 0.216 204.12510 = CC.216 e, 631.25 the integer part 631, convert to hexadecimal format Quotient Remainder 631/16 39 7 39/16 2 7 2/16 0 2 63110 = 27716 the fraction part 0.25, convert to hexadecimal format product integer part 0.25x16 4.0 4 0.2510 = 0.416 531.2510 = 277.416 f, 100000.00390625 the integer part 100000, convert to hexadecimal format Quotient Remainder 100000/16 6250 0 6250/16 390 10 390/16 24 6 24/16 1 8 1/16 0 1 10000010 = 186 A016 the fraction part is 0.00390625, convert to hexadecimal format product integer part 0.00390625x16 0.0625 0 0.0625x16 1.0 1 0.0039062510 = 0.0116 100000.0039062510 = 186 A0.0116