Vertical Deflection of C, Structural Analysis PDF
Document Details
Uploaded by Deleted User
Tags
Related
- Introduction to Structural Analysis & Design of RC Building PDF
- Introduction to Structural Analysis PDF
- Smart Electric Grid and Energy Management PDF - 2024
- CVL403 Structural Analysis-1 PDF
- Module 3-Specialized 413a-Earthquake Engineering PDF
- Structural Analysis with Applications to Aerospace Structures PDF
Summary
This document contains a detailed analysis of the vertical deflection of point C, considering the effects of temperature and settlement. Calculations use formulas from structural analysis to determine the deflection values. The structural analysis is focused on identifying the effects of non-uniform temperature changes and site settlement on a structure.
Full Transcript
## Determine Vertical Deflection of c **Due to:** - Non-uniform Temp Tin=10, Tout=20 h: 0.6 - Settlement 1.5 cm at support B ### Due to Temp **Formula:** $I\Delta E = \alpha \ T_{in} - T_{out} \ \int_{N}^{L}N, dL + \alpha \ (T_{in}-T_{out}) \int_{M}^{L} M, dL$ **Calculations:** - $I \Delta...
## Determine Vertical Deflection of c **Due to:** - Non-uniform Temp Tin=10, Tout=20 h: 0.6 - Settlement 1.5 cm at support B ### Due to Temp **Formula:** $I\Delta E = \alpha \ T_{in} - T_{out} \ \int_{N}^{L}N, dL + \alpha \ (T_{in}-T_{out}) \int_{M}^{L} M, dL$ **Calculations:** - $I \Delta E = \frac {1}{2} \ 1.416 \ \frac {1}{2} 20 + 20 \ \frac {1}{2} [ \frac{1}{2} \ \frac{1}{2} 416 \times 1.133 \ \frac{1}{2} - (-\frac{1}{2} \ \frac{1}{2} \ 416 \times 1.133 \ \frac{1}{2}) + \frac{1}{2} \ \frac{1}{2} \ 205 \ \frac{1}{2} - \frac{1}{2} \ \frac{1}{2} 1273 \ \frac{1}{2} ]$ - $I\Delta E = -3.664154 \ m = -0.366 \ mm$ ### Due to Settlement **Formula:** $1 \Delta S + R + Settlement = 0 => 1 \Delta S - 1 * 1.5 = 0$ **Calculations:** - $Sc = 1.5 \ cm$ ## Maximum Deflection ### Double Integration **Formulas:** - $M(x) = -1.67x + 6.67 \ (C)(x-6)$ - $y' = EI \ \int [-1.67x + 6.67 \ (C) (x-6) \ dx$ - $y' = EI \ \int [ \frac{1.67}{2}x^2 - 6.67 \ C(x-6)^2 + C_1] \ dx$ - $y = EI \ \int[ \frac{1.67}{6} x^3 - 6.67 \ C(x-6)^3 + Cx + C_2] \ dx$ **Boundary Conditions:** - at x=0 y=0: $C_2=0$ - at x=6 y=0: $C_1=-10$ **Calculations:** - Max deflection occurs at $y'=0$ - $\frac{1.67}{2}x^2 - 10 = 0$ - $X = 3.46 \ m$ - $\int_{x=3.46}^{}y \ dx = EI \ \int_{x=3.46}^{}[ \frac{1.67}{6} (3.46)^3 - 10 \times 3.46] = \frac{-23.07}{EI} \uparrow$ ## Conjugate Beam **Formulas:** - $10 - \frac{1}{2}x + \frac{1}{2}x \ \frac{lo}{6}x = 0$ - $Moment = Deflection: -10 \frac{3.46}{6} + [\frac{1}{2} \frac{1}{2} \frac{416}{6} \ (3.46)^2 \frac{1}{2} \ \frac{1}{2}] \times \frac{3.46}{3} = \frac{-23.09}{EI}$ ## Virtual Work **Formulas:** - $0 = \frac{X}{6} 2 + \frac{X}{6}2 + \frac{lo}{6}X - \frac{(6-x)}{6} \ [ 2 \times \frac{lo}{6} \frac{(6-x)}{6} \ \frac{1}{2} + 10 \times (1-\frac{6-x}{6})] =0$ - $Y = 3.46 \ + 2 \times \frac{416}{6} \times 3.46 + \frac{10}{6} \times 3.46 - \frac{6-3.46}{6} \times [ 2 \times \frac{416}{6} \times 3.46 \ + \frac{10}{6} \times 3.46 + 4166 ] = \frac{-23.09}{EI}$