Metric Spaces Lecture Notes PDF
Document Details
![RationalAntimony8877](https://quizgecko.com/images/avatars/avatar-17.webp)
Uploaded by RationalAntimony8877
Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar
P.K. Jain & Khalil Ahmed
Tags
Summary
These lecture notes cover metric spaces, including distance functions in mathematics, basic set theory principles such as union and intersection, and properties of operations on sets, along with De Morgan's Laws. The document also discusses indexing sets, which helps to illustrate the topics.
Full Transcript
## Metric Spaces I by P.K. Jain & Khalil Ahmed Metric: distance function $(X, d)$ metric spaces * $i) d(x, y) \geq 0, \forall x, y$ * $ii) d(x, y) = 0 \iff x = y$ * $ iii) d(x, y) = d(y, x)$ * $ iv) d(x, y) \leq d(x, z) + d(z, y)$ $d: X \times X \to \mathbb{R}$ ### Chapter 1.1 Prelim...
## Metric Spaces I by P.K. Jain & Khalil Ahmed Metric: distance function $(X, d)$ metric spaces * $i) d(x, y) \geq 0, \forall x, y$ * $ii) d(x, y) = 0 \iff x = y$ * $ iii) d(x, y) = d(y, x)$ * $ iv) d(x, y) \leq d(x, z) + d(z, y)$ $d: X \times X \to \mathbb{R}$ ### Chapter 1.1 Preliminaries **Set:** Well-defined unordered collection of distinct objects **Synonyms:** Aggregate, class, family Tabulated form: $A = \{a, e, i, o, u\}$ Defining property method: $A =\{x | x \text{ is a vowel in English}\}$ $a \in A$ , $\cancel{a} \notin A$. **Subset:** $A \subset B$ if $x \in A \implies x \in B \qquad \phi \subset A, A \subset A$ **Proper Subset:** If $A \neq \phi, A \neq B$ and $A \subset B$ then A is called a proper subset of B and we denote it as $A \subseteq B$ $B = \{1, 2, 3, 4\} \qquad A = \{1, 2\}$ A is proper subset of B ### Operations on set $A \cup B = \{x | x \in A \text{ or } x \in B\}$ union $A \cap B = \{x | x \in A \text{ and } x \in B\}$ intersection $A - B = \{x | x \in A \text{ but } x \notin B\}$ $B - A = \{x | x \in B \text{ but } x \notin A\}$ $A - B \neq B - A$ $A^c = U - A$ complement $A - B = \{x \in U | x \in A \text{ but } x \notin B\}$ $= \{ x \in U | x \in A \} \cap \{ x \notin B \}$ $= A \cap B^c$ $A - B = A \cap B^c$ Let A, B, C be sets, then the following laws hold good: 1) Commutative property $A \cup B = B \cup A, \qquad A \cap B = B \cap A$ 2) Associative property $A \cup (B \cup C) = (A \cup B) \cup C, \qquad A \cap (B \cap C) = (A \cap B) \cap C$ 3) $A \cup U = U, \qquad A \cap U = A$ 4) $A \cup A^c = U, \qquad A \cap A^c = \Phi$ 5) Distributive Laws $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 6) De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$ Let $A_1, A_2, \dots A_n$ be finitely many sets then $A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^{n} A_i = \{x | x \in A_i \text{ for at least one } i \}$ $A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^{n} A_i = \{x | x \in A_i \text{ for each } i \}$ $\{1, 2, 3 \dots, n\}$ is indexing set Taking $N = \{1, 2, 3, 4, ...\}$ as indexing set $\bigcup_{i=1}^{\infty} A_i = \{x | x \in A_i \text{ for some } i \in N \}$ $\bigcap_{i=1}^{\infty} A_i = \{x | x \in A_i \text{ for each } i \in N \}$ Let $\Lambda$ be indexing set, $\{A_\alpha\}_{\alpha \in \Lambda}$ be indexed family of sets $\bigcup_{\alpha \in \Lambda} A_\alpha = \{x | x \in A_\alpha \text{ for some } \alpha \in \Lambda \}$ $\bigcap_{\alpha \in \Lambda} A_\alpha = \{x | x \in A_\alpha \text{ for each } \alpha \in \Lambda \}$ De Morgan's Laws $(\bigcup_{\alpha \in \Lambda} A_\alpha )^c = \bigcap_{\alpha \in \Lambda} A_\alpha^c$ $(\bigcap_{\alpha \in \Lambda} A_\alpha )^c = \bigcup_{\alpha \in \Lambda} A_\alpha^c$