Mathematics and Statistics PDF (math114)

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Document Details

GratifyingGalaxy9876

Uploaded by GratifyingGalaxy9876

Jazan University

Tags

algebraic operations mathematics real numbers exponents and radicals

Summary

This document presents notes related to basic algebraic operations, including the properties of real numbers, integer exponents, and radicals. Examples and exercises are included for each topic. Sections on rational exponents and simplifying radicals are also covered.

Full Transcript

Mathematics and Statistics (math114) College of Business Administration Jazan University 1 __________ math114 Chapter R: Basic Algebraic Operations R-1 Algebra and Real Numbers Ø The Set of Real Numbers: Ø The Real Number Line: Ø...

Mathematics and Statistics (math114) College of Business Administration Jazan University 1 __________ math114 Chapter R: Basic Algebraic Operations R-1 Algebra and Real Numbers Ø The Set of Real Numbers: Ø The Real Number Line: Ø Addition and Multiplication of Real Numbers: Ex. Perform the indicated operations: 𝟏 𝟔 (𝟏)(𝟓)'(𝟑)(𝟔) 𝟓'𝟏𝟖 𝟐𝟑 A. + = 𝟑 𝟓 = = (𝟑)(𝟓) 𝟏𝟓 𝟏𝟓 𝟏 𝟏 B. + = 𝟑 𝟓 𝟑 𝟒 C. + = 𝟒 𝟑 2 __________ math114 𝟖 𝟓 (𝟖)(𝟓) 𝟒𝟎 𝟏𝟎 ,-.,∙0- 0- D. ∙ = (𝟑)(𝟒) = = 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 = 𝟑 𝟒 𝟏𝟐 𝟑 01.,.3 3 𝟐 𝟒 E.. = 𝟑 𝟕 𝟑 𝟓 F. ,−. ,−. = 𝟓 𝟑 Ø Further Operations and Properties § Basic Properties of The Set of Real Numbers: Addition Properties & Multiplication Properties: These operations are 𝟑 𝟓 𝟓 𝟑 Commutative (+): 𝒙 + 𝒚 = 𝒚 + 𝒙 𝒆𝒙. + = + 𝟐 𝟕 𝟕 𝟐 𝟑 𝟓 𝟓 𝟑 Commutative (.): 𝒙𝒚 = 𝒚𝒙 𝒆𝒙.. =. 𝟐 𝟕 𝟕 𝟐 𝟑 𝟓 𝟗 𝟑 𝟓 𝟗 Associative (+): (𝒙 + 𝒚) + 𝒛 = 𝒙 + (𝒚 + 𝒛) 𝒆𝒙. +, +. =, +.+ 𝟐 𝟕 𝟒 𝟐 𝟕 𝟒 𝟑 𝟓 𝟗 𝟑 𝟓 𝟗 Associative (.): (𝒙. 𝒚). 𝒛 = 𝒙. (𝒚. 𝒛) 𝒆𝒙.. ,.. = , 𝟐. 𝟕.. 𝟒 𝟐 𝟕 𝟒 𝟓 𝟓 𝟓 𝟎 𝒊𝒔 𝒂𝒏 𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒚 (+): 𝟎 + 𝒙 = 𝒙 + 𝟎 = 𝒙 𝒆𝒙. 𝟎 + 𝟐 = 𝟐 + 𝟎 = 𝟐 = 𝟓 𝟓 𝟓 𝟏 𝒊𝒔 𝒂 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒕𝒊𝒗𝒆 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒚 (. ): 𝟏. 𝒙 = 𝒙. 𝟏 = 𝒙 𝒆𝒙. 𝟏. =. 𝟏 = 𝟐 𝟐 𝟐 Additive inverse (+): 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑥 𝒊𝒏 𝑹, −𝑥 𝒊𝒕𝒔 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 ; 𝒕𝒉𝒂𝒕 𝒊𝒔 𝒙 + (−𝒙) = (−𝒙) + 𝒙 = 𝟎 𝟓 𝟓 𝟓 𝟓 𝟓 𝟓 𝒆𝒙. 𝟒 𝒊𝒕𝒔 𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 − 𝟒 ;𝒕𝒉𝒂𝒕 𝒊𝒔 𝟒 + ,− 𝟒. = 𝟒 − 𝟒 = 𝟎 Multiplicative inverse (.): 0 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑥 𝒊𝒏 𝑹, 𝒙 ≠ 𝟎, 𝑥 60 = 𝒊𝒔 𝒊𝒕𝒔 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒗𝒆 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 7 6𝟏 6𝟏 ; 𝒕𝒉𝒂𝒕 𝒊𝒔 𝒙𝒙 = 𝒙 𝒙 = 𝟏 𝟓 𝟓 𝟒 𝟓 𝟒 𝟓.𝟒 𝟐𝟎 𝒆𝒙. 𝒊𝒕𝒔 𝒂 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒗𝒆 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 ( )6𝟏 = ; 𝒕𝒉𝒂𝒕 𝒊𝒔. = = =𝟏 𝟒 𝟒 𝟓 𝟒 𝟓 𝟒.𝟓 𝟐𝟎 𝟏𝟕 𝟗 𝒆𝒙. (− 𝟗 )$𝟏 = − 𝟏𝟕 Distributive: 𝒙(𝒚 + 𝒛) = 𝒙𝒚 + 𝒙𝒛 (𝒙 + 𝒚)𝒛 = 𝒙𝒛 + 𝒚𝒛 Ex. Which real number property justifies the indicated statement? A. (𝟕𝒙)𝒚 = 𝟕(𝒙𝒚) … … … … … … … …. B. 𝒂(𝒃 + 𝒄) = 𝒂𝒃 + 𝒂𝒄 ……………… C. 𝒂(𝒃 + 𝒄) = (𝒃 + 𝒄)𝒂 ……………… 3 __________ math114 D. (𝟐𝒙 + 𝟑𝒚) + 𝟓𝒚 = 𝟐𝒙 + (𝟑𝒚 + 𝟓𝒚) … … … … …. E. (𝒙 + 𝒚)(𝒂 + 𝒃) = (𝒙 + 𝒚)𝒂 + (𝒙 + 𝒚)𝒃 … … … … … … …. F. 𝑰𝒇 𝒂 + 𝒃 = 𝟎 , 𝒕𝒉𝒆𝒏 𝒃 = −𝒂 … … … … … … …. Ex. Perform the indicated operations: A. 𝟏𝟎𝟎 ÷ 𝟎 = 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑏𝑦 0 𝑛𝑒𝑣𝑒𝑟 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝟏 𝟏 B. 𝟐 + 𝟕 = 𝟖 𝟒 C. − = 𝟗 𝟓 𝟏 𝟑 D. ,−.. = 𝟏𝟎 𝟖 E. 𝟎 ÷ 𝟎 = 𝟒 𝟔 F. 𝟕 ÷ ,𝟑 − 𝟐. = G. −(𝟒6𝟏 + 𝟑) = 𝟑 6𝟏 𝟖 𝟏 (𝟖)(𝟐)'(𝟑)(𝟏) 𝟏𝟔'𝟑 𝟏𝟗 H. ,. + 𝟐6𝟏 = + = = = 𝟖 𝟑 𝟐 (𝟑)(𝟐) 𝟔 𝟔 𝟗 6𝟏 6𝟔 𝟗 6𝟏 (6𝟔)(𝟐)'(𝟏)(𝟗) 6𝟏 6𝟏𝟐'𝟗 6𝟏 6𝟑 6𝟏 𝟐 I. ,−𝟔 +. =, +. =,. =,. =,. = 𝟐 𝟏 𝟐 (𝟏)(𝟐) 𝟐 𝟐 6𝟑 4 __________ math114 R-2 Exponents and Radicals Ø Integer Exponents: Ex. A. 𝟐𝟓 = 𝟐. 𝟐. 𝟐. 𝟐. 𝟐 = 𝟑𝟐 𝟏 𝟏 𝟏 B. 𝟕$𝟑 = 𝟕.𝟑 = 𝟕.𝟕.𝟕 = 𝟑𝟒𝟑 C. 𝟐𝟑𝟎 = 𝟏 Ex. Write using positive exponents or decimals: A. (𝒖𝟑 𝒗𝟐 )𝟎 = 𝟏 𝟏 B. 𝒙$𝟖 = 𝒙𝟖 𝟏 𝟏 𝟏 C. 𝟏𝟎$𝟑 = = = = 𝟎. 𝟎𝟎𝟏 𝟏𝟎𝟑 (𝟏𝟎)(𝟏𝟎)(𝟏𝟎) 𝟏𝟎𝟎𝟎 𝒙#𝟑 𝒙#𝟑 𝟏 𝟏 𝒚𝟓 𝟏(𝒚𝟓 ) 𝒚𝟓 D. 𝒚#𝟓 = 𝟏. 𝒚#𝟓 = 𝒙𝟑. 𝟏 = (𝒙𝟑 )(𝟏) = 𝒙𝟑 Ex. Simplify using exponents properties, and express answer using positive exponents only? A. c𝟑𝒂𝟓 d(𝟐𝒂6𝟑 ) = (𝟑. 𝟐)c𝒂𝟓 𝒂6𝟑 d = 𝟔𝒂𝟓'(6𝟑) = 𝟔𝒂𝟓6𝟑 = 𝟔𝒂𝟐 𝟏 𝒂𝟔 𝟏 𝟏 𝒂𝟔 𝟏 𝒂𝟔 𝒂𝟔 B. (𝟐𝒂$𝟑 𝒃𝟐 )$𝟐 = 𝟐(𝟏)($𝟐) 𝒂($𝟑)($𝟐) 𝒃(𝟐)($𝟐) = 𝟐$𝟐 𝒂𝟔 𝒃$𝟒 = 𝟐𝟐 𝟏 𝒃𝟒 = 𝟐.𝟐 𝒃𝟒 = 𝟒 𝒃𝟒 = 𝟒𝒃𝟒 𝟔𝒙!𝟐 𝟔 𝒙!𝟐 𝟑.𝟐 𝟑 𝟑 𝟑 𝒙𝟑 𝟑𝒙𝟑 C. = 𝟖. = 𝟒.𝟐. 𝒙6𝟐6(6𝟓) = 𝟒. 𝒙6𝟐'𝟓 = 𝟒 𝒙𝟑 = 𝟒. = 𝟖𝒙!𝟓 𝒙!𝟓 𝟏 𝟒 D. −𝟒𝒚𝟑 − (−𝟒𝒚)𝟑 = −𝟒𝒚𝟑 − (−𝟒)𝟑 𝒚𝟑 5 __________ math114 = −𝟒𝒚𝟑 − (−𝟒)(−𝟒)(−𝟒)𝒚𝟑 = −𝟒𝒚𝟑 − (+𝟏𝟔)(−𝟒)𝒚𝟑 = −𝟒𝒚𝟑 − (−𝟔𝟒)𝒚𝟑 = −𝟒𝒚𝟑 + 𝟔𝟒𝒚𝟑 = +𝟔𝟎𝒚𝟑 Ex. evaluate each expression. If the answer is not an integer, write it in fraction form: A. 𝟑𝟕 = 𝟏 𝟖 B. ,𝟐. = C. 𝟔6𝟑 = D. (−𝟓)𝟒 = E. (−𝟕)6𝟐 = F. −𝟏𝟎 = Ø Roots of Real Numbers: Theorem: Number of Real nth Roots of a Real Number b Let n be a natural number and b a real number: 1. 𝒃 > 𝟎: 𝐼𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑡ℎ𝑒𝑛 𝑏 ℎ𝑎𝑠 𝑡𝑤𝑜 𝑟𝑒𝑎𝑙 𝑛𝑡ℎ 𝑟𝑜𝑜𝑡𝑠, 𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟; Ex. √𝟗 = ±𝟑 𝟑 𝐼𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑡ℎ𝑒𝑛 𝑏 ℎ𝑎𝑠 𝑜𝑛𝑒 𝑟𝑒𝑎𝑙 𝑛𝑡ℎ 𝑟𝑜𝑜𝑡. Ex. √𝟖 = 𝟐 2. 𝐼𝑓 𝒃 = 𝟎: 0 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑛𝑡ℎ 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑏 = 0. Ex. √𝟎 = 𝟎 𝟑 Ex. √𝟎 = 𝟎 3. 𝐼𝑓 𝒃 < 𝟎: 𝐼𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑡ℎ𝑒𝑛 𝑏 ℎ𝑎𝑠 𝑛𝑜 𝑟𝑒𝑎𝑙 𝑛𝑡ℎ 𝑟𝑜𝑜𝑡; Ex. √−𝟗 = 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 (𝒏𝒐𝒕 𝒂 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓) 𝐼𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑡ℎ𝑒𝑛 𝑏 ℎ𝑎𝑠 𝑜𝑛𝑒 𝑟𝑒𝑎𝑙 𝑛𝑡ℎ 𝑟𝑜𝑜𝑡. 𝟑 Ex. √−𝟖 = −𝟐 Ø Rational Exponents and Radicals: Ex. Evaluate each expression: 𝟏 𝒏 A. 𝒃𝒏 = √𝒃 𝟏 B. 𝟗𝟐 = √𝟗 = 𝟑 6 __________ math114 𝟏 C. √𝟏𝟐𝟏 = 𝟏𝟐𝟏𝟐 = 𝟏𝟏 𝟏 𝟒 D. (−𝟏𝟔)𝟒 = √−𝟏𝟔 = 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅 (𝒏𝒐𝒕 𝒂 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓) 𝟏 𝟑 E. √−𝟏𝟐𝟓 = (−𝟏𝟐𝟓)𝟑 = −𝟓 𝟏 𝟑 F. (𝟐𝟕)𝟑 = √𝟐𝟕 = 𝟑 𝟏 𝟓 G. √𝟑𝟐 = 𝟑𝟐𝟓 = 𝟐 ___________________________________________________________________________ Ex. Change to radical form: 𝟏 A. (𝟏𝟎𝟎)𝟐 = √𝟏𝟎𝟎 = 𝟏𝟎 𝟏 B. (𝟑𝟐)𝟓 = Ex. Change to rational exponent form: 𝟏 A. √𝟑𝟔𝟏 = (𝟑𝟔𝟏)𝟐 = 𝟏𝟗 𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 B. √𝒙𝟐 + o𝒚𝟐 = (𝒙𝟐 )𝟑 + (𝒚𝟐 )𝟑 = 𝒙𝟑 + 𝒚𝟑 𝟏 𝟑 𝟓 C. 𝟒𝒙 o𝒚𝟑 = 𝟒𝒙(𝒚𝟑 )𝟓 = 𝟒𝒙𝒚𝟓 Ex. Simplify and express answers using positive exponents only? 𝟐 𝟏 𝟐 𝟐 𝟑 A. 𝟖𝟑 = ,𝟖𝟑. = c √𝟖d = 𝟐𝟐 = 𝟐. 𝟐 = 𝟒 𝟒 𝟏 𝟏𝟐.𝟏 𝟏𝟐 B. √𝟑𝟏𝟐 = (𝟑𝟏𝟐 )𝟒 = 𝟑 𝟏.𝟒 = 𝟑 𝟒 = 𝟑𝟑 = 𝟑. 𝟑. 𝟑 = 𝟗. 𝟑 = 𝟐𝟕 7 __________ math114 𝟏 𝟏 𝟏 𝟏 (𝟏)(𝟐)+(𝟑)(𝟏) 𝟐+𝟑 𝟓 C. c𝟑 √𝒙dc𝟐√𝒙d = ,𝟑𝒙𝟑. ,𝟐𝒙𝟐. = (𝟑. 𝟐)𝒙𝟑'𝟐 = 𝟔𝒙 𝟑 (𝟑)(𝟐) = 𝟔𝒙𝟔 = 𝟔𝒙𝟔 𝟏 𝟏 𝟐 𝟏 𝟏𝟏 𝟏 (𝟏)(𝟒)!(𝟔)(𝟏) (!𝟐)(𝟏) 𝟏.. 𝟏 𝟏 𝟒!𝟔 !𝟐 !𝟏 𝟒𝒙𝟑 𝟒 𝟐 𝒙𝟑 𝟐 √𝟒𝒙𝟔 D. p 𝟏 q = 𝟏𝟏 = 𝟏 = 𝟐𝒙𝟔6𝟒 = 𝟐𝒙 (𝟔)(𝟒) = 𝟐𝒙 𝟐𝟒 = 𝟐𝒙 𝟐𝟒 = 𝟐𝒙 (𝟐)(𝟏𝟐) = 𝟐𝒙 𝟏𝟐 =. 𝒙𝟐 𝒙𝟐 𝟐 𝒙𝟒 𝟏 𝟐 𝟐. 𝟏 = 𝟏 𝒙𝟏𝟐 𝒙𝟏𝟐 Ø Simplifying Radicals: Ex. Write in simplified radical form: 𝟏 𝟏 𝟏 𝟏 𝟏 𝟒 𝟖 A. o𝟏𝟔𝒎𝟒 𝒚𝟖 = (𝟏𝟔𝒎𝟒 𝒚𝟖 )𝟐 = 𝟏𝟔𝟏.𝟐 𝒎𝟒.𝟐 𝒚𝟖.𝟐 = 𝟏𝟔𝟐 𝒎𝟐 𝒚𝟐 = √𝟏𝟔𝒎𝟐 𝒚𝟒 = 𝟒𝒎𝟐 𝒚𝟒 𝟏 B. o𝟏𝟐𝒙𝟓 𝒚𝟐 = c𝟏𝟐𝒙𝟓 𝒚𝟐 d𝟐 𝟏 𝟓 𝟐 = 𝟏𝟐𝟐 𝒙𝟐 𝒚𝟐 𝟏 𝟏 = (𝟑. 𝟒)𝟐 𝒙𝟐 𝒙𝟐 𝒚 𝟏 𝟏 = 𝒚𝟑𝟐 𝟒𝟐 𝒙𝟐 √𝒙 = 𝒚√𝟑√𝟒 𝒙𝟐 √𝒙 = 𝟐𝒙𝟐 𝒚√𝟑𝒙 𝟏 𝟔 C. o𝟏𝟔𝒙𝟒 𝒚𝟐 = (𝟏𝟔𝒙𝟒 𝒚𝟐 )𝟔 𝟏 𝟒 𝟐 = 𝟏𝟔𝟔 𝒙𝟔 𝒚𝟔 𝟏 𝟐 𝟏 = (𝟒𝟐 )𝟔 𝒙𝟑 𝒚𝟑 𝟐 𝟏 = 𝟒𝟔 (𝒙𝟐 )𝟑 𝟑o𝒚 𝟏 𝟑 = 𝟒𝟑 √𝒙𝟐 𝟑o𝒚 𝟑 𝟑 𝟑 = √𝟒 √𝒙𝟐 𝟑o𝒚 = o𝟒𝒙𝟐 𝒚 𝟏 𝟓 D. 𝒙 o𝟑𝟔 𝒙𝟕 𝒚𝟏𝟏 = 𝒙 (𝟑𝟔 𝒙𝟕 𝒚𝟏𝟏 )𝟓 𝟏 𝟏 𝟏 = 𝒙 (𝟕𝟐𝟗)𝟓 (𝒙𝟕 )𝟓 (𝒚𝟏𝟏 )𝟓 8 __________ math114 𝟏 𝟕 𝟏𝟏 = 𝒙 (𝟐𝟒𝟑. 𝟑)𝟓 𝒙𝟓 𝒚 𝟓 𝟕 𝟏 𝟏 𝟏 = 𝒙 𝒙𝟓 𝟐𝟒𝟑𝟓 𝟑𝟓 𝒚𝟐 𝒚𝟓 𝟕 = 𝒙𝟏'𝟓 √𝟐𝟒𝟑 √𝟑 𝒚𝟐 𝟓o𝒚 𝟓 𝟓 𝟓+𝟕 =𝒙 𝟓. 𝟑. 𝒚𝟐 𝟓o𝟑𝒚 𝟏𝟐 = 𝟑 𝒙 𝟓 𝒚𝟐 𝟓o𝟑𝒚 𝟐 = 𝟑 𝒙𝟐 𝒙𝟓 𝒚𝟐 𝟓o𝟑𝒚 𝟏 = 𝟑 𝒙𝟐 𝒚𝟐 (𝒙𝟐 )𝟓 𝟓o𝟑𝒚 𝟓 = 𝟑 𝒙𝟐 𝒚𝟐 √𝒙𝟐 𝟓o𝟑𝒚 𝟓 = 𝟑 𝒙𝟐 𝒚𝟐 o𝟑 𝒙𝟐 𝒚 𝟔 𝟔 √𝟐𝒙 𝟔√𝟐𝒙 𝟔√𝟐𝒙 𝟑√𝟐𝒙 E. =. = 𝟐 = = √𝟐𝒙 √𝟐𝒙 √𝟐𝒙 :√𝟐𝒙; 𝟐𝒙 𝒙 𝟏𝟐𝒚𝟐 𝟏𝟐𝒚𝟐 =𝟔𝒚 𝟏𝟐𝒚𝟐 𝟏𝟐𝒚𝟐 (𝟔.𝟐)(𝒚.𝒚) F. =. = 𝟐 = 𝟔𝒚 = 𝟔𝒚 = 𝟐𝒚 =𝟔𝒚 =𝟔𝒚 =𝟔𝒚 :=𝟔𝒚; 𝟏 𝟏 𝟏 𝟒 𝟐 𝟏 𝟏 𝟑 𝟑 𝟑 𝟑 𝟑 𝟖𝒙𝟒 𝟖𝒙𝟒 𝟑 𝟖𝟑 :𝒙𝟒 ;𝟑 √𝟖𝒙𝟑 𝒚𝟑 𝟐𝒙𝒙𝟑 :𝒚𝟐 ;𝟑 𝟐𝒙 √𝒙 =𝒚𝟐 𝟐𝒙 =𝒙𝒚𝟐 G. r =,. = 𝟏 = = = = 𝒚 𝒚 𝒚 𝒚 𝒚 𝒚 𝒚𝟑 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 H. −√𝟏𝟐𝟖 = −(𝟏𝟐𝟖)𝟐 = −(𝟏𝟔. 𝟖)𝟐 = −(𝟏𝟔)𝟐 (𝟖)𝟐 = −√𝟏𝟔 (𝟒. 𝟐)𝟐 = −𝟒(𝟒)𝟐 (𝟐)𝟐 = −𝟒√𝟒 √𝟐 = −𝟒. 𝟐. √𝟐 = −𝟖√𝟐 𝟏 𝟏 𝟏 𝟏 I. √𝟐𝟕 − 𝟓√𝟑 = (𝟐𝟕)𝟐 − 𝟓√𝟑 = (𝟗. 𝟑)𝟐 − 𝟓√𝟑 = (𝟗)𝟐 (𝟑)𝟐 − 𝟓√𝟑 = √𝟗√𝟑 − 𝟓√𝟑 = 𝟑√𝟑 − 𝟓√𝟑 = (𝟑 − 𝟓)√𝟑 = −𝟐√𝟑 Ex. Simplify and express answer using positive exponents only: A. 𝒙𝟓 𝒙6𝟐 = B. (𝟐𝒚)(𝟑𝒚𝟐 )(𝟓𝒚𝟒 ) = C. (𝒂𝟐 𝒃𝟑 )𝟓 = 𝟏 𝟓 D. 𝒖𝟑 𝒖𝟑 = 𝟏 𝟏 𝟏 𝟒 6 𝟒(! ) ! 𝒘𝟒 𝟐 𝒘 𝟐 𝟗𝟐 𝒘 𝟐 √𝟗 𝒘!𝟐 𝟑𝒙 E. ,. = 𝟏 𝟏 = 𝟐 = = 𝟗𝒙!𝟐 ! (!𝟐)(! ) ! 𝒙!𝟏 𝒘𝟐 𝟗 𝟐 𝒙 𝟐 𝒙 𝟐 9 __________ math114 R-3 Polynomials: Basic Operations and Factoring Ø Polynomials: Ex. Which of the following are polynomials? A. 𝒙𝟐 − 𝟑𝒙 + 𝟐 … 𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 … B. 𝒙𝟒 + √𝟐 … 𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 … 𝟏 C. 𝟐𝒙 + 𝟓 − 𝒙 … 𝑵𝒐𝒏𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 … D. √𝒙𝟑 − 𝟒𝒙 + 𝟏 … 𝑵𝒐𝒏𝑷𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍 … Ex. Given the following polynomials what is the degree of the first term, second term, third term, and the whole polynomial: A. 𝟐𝒙𝟑 − 𝒙𝟔 + 𝟕 The degree of the first term= 𝟑 The degree of the second term= 𝟔 The degree of the third term= 𝟎 The degree of the whole polynomial= 𝟔 B. 𝒙𝟑 𝒚𝟐 + 𝟐𝒙𝟐 𝒚 + 𝟏 The degree of the first term= 𝟓 The degree of the second term= 𝟑 The degree of the third term= 𝟎 The degree of the whole polynomial= 𝟓 Ex. Is the algebraic expression a polynomial? If so, give its degree. A. 𝟒 − 𝒙𝟐 … … … … … … … … … … … B. 𝒙𝟓 − 𝟒𝒙𝟐 + 𝟔6𝟐 … … … … … … … … … ….. C. 𝒙𝟒 + 𝟑𝒙 − √𝟓 … … … … … … … … D. 𝟑𝒙𝟒 − 𝟐𝒙6𝟏 − 𝟏𝟎 … … … … … … … … … … Ø Addition and Subtraction § Adding polynomials: Ex. Add: 𝒙𝟒 − 𝟑𝒙𝟑 + 𝒙𝟐 , −𝒙𝟑 − 𝟐𝒙𝟐 + 𝟑𝒙 , and 𝟑𝒙𝟐 − 𝟒𝒙 − 𝟓 Solution: Vertically: 𝒙𝟒 − 𝟑𝒙𝟑 + 𝒙𝟐 −𝒙𝟑 − 𝟐𝒙𝟐 + 𝟑𝒙 𝟑𝒙𝟐 − 𝟒𝒙 − 𝟓 _______________________ 𝒙𝟒 − 𝟒𝒙𝟑 + 𝟐𝒙𝟐 − 𝒙 − 𝟓 Horizontally: (𝒙𝟒 − 𝟑𝒙𝟑 + 𝒙𝟐 ) + (−𝒙𝟑 − 𝟐𝒙𝟐 + 𝟑𝒙) + (𝟑𝒙𝟐 − 𝟒𝒙 − 𝟓) = 𝒙𝟒 − 𝟑𝒙𝟑 + 𝒙𝟐 − 𝒙𝟑 − 𝟐𝒙𝟐 + 𝟑𝒙 + 𝟑𝒙𝟐 − 𝟒𝒙 − 𝟓 = 𝒙𝟒 + (−𝟑 − 𝟏)𝒙𝟑 + (𝟏 − 𝟐 + 𝟑)𝒙𝟐 + (𝟑 − 𝟒)𝒙 − 𝟓 = 𝒙𝟒 − 𝟒𝒙𝟑 + 𝟐𝒙𝟐 − 𝒙 − 𝟓 10 __________ math114 § Subtracting polynomials: Ex. Subtract: 𝟒𝒙𝟐 − 𝟑𝒙 + 𝟓 𝒇𝒓𝒐𝒎 𝒙𝟐 − 𝟖 Solution: Horizontally: (𝒙𝟐 − 𝟖) − (𝟒𝒙𝟐 − 𝟑𝒙 + 𝟓) = 𝒙𝟐 − 𝟖 − 𝟒𝒙𝟐 + 𝟑𝒙 − 𝟓 = (𝟏 − 𝟒)𝒙𝟐 + 𝟑𝒙 + (−𝟖 − 𝟓) = −𝟑𝒙𝟐 + 𝟑𝒙 − 𝟏𝟑 Ø Multiplication § Multiplying polynomials: Ex. Multiply: A. (𝟐𝒙 − 𝟑)(𝟑𝒙𝟐 − 𝟐𝒙 + 𝟑) Solution: = 𝟐𝒙(𝟑𝒙𝟐 − 𝟐𝒙 + 𝟑) − 𝟑(𝟑𝒙𝟐 − 𝟐𝒙 + 𝟑) = 𝟐𝒙(𝟑𝒙𝟐 ) + 𝟐𝒙(−𝟐𝒙) + 𝟐𝒙(𝟑) − 𝟑(𝟑𝒙𝟐 ) − 𝟑(−𝟐𝒙) − 𝟑(𝟑) = 𝟔𝒙𝟑 − 𝟒𝒙𝟐 + 𝟔𝒙 − 𝟗𝒙𝟐 + 𝟔𝒙 − 𝟗 = 𝟔𝒙𝟑 + (−𝟒 − 𝟗)𝒙𝟐 + (𝟔 + 𝟔)𝒙 − 𝟗 = 𝟔𝒙𝟑 − 𝟏𝟑𝒙𝟐 + 𝟏𝟐𝒙 − 𝟗 B. (𝒂 − 𝒃)(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐 ) = … … … … … … … Ex. Perform the indicated operations and simplify C. (𝟒𝒙 − 𝒚)𝟐 = (𝟒𝒙 − 𝒚)(𝟒𝒙 − 𝒚) 𝑶𝒓 (𝟒𝒙 − 𝒚)𝟐 = (𝟒𝒙)𝟐 − 𝟐(𝟒𝒙)(𝒚) + 𝒚𝟐 = 𝟒𝒙(𝟒𝒙 − 𝒚) − 𝒚(𝟒𝒙 − 𝒚) = 𝟒𝟐 𝒙𝟐 − 𝟖𝒙𝒚 + 𝒚𝟐 = 𝟒𝒙(𝟒𝒙) + 𝟒𝒙(−𝒚) − 𝒚(𝟒𝒙) − 𝒚(−𝒚) = 𝟏𝟔𝒙𝟐 − 𝟖𝒙𝒚 + 𝒚𝟐 𝟐 𝟐 = 𝟏𝟔𝒙 − 𝟒𝒙𝒚 − 𝟒𝒙𝒚 + 𝒚 = 𝟏𝟔𝒙𝟐 − 𝟖𝒙𝒚 + 𝒚𝟐 D. (𝟓𝒚 − 𝟏)(𝟑 − 𝟐𝒚) = … … … … … … … … ….. E. 𝟐𝒚 − 𝟑𝒚[𝟒 − 𝟐(𝒚 − 𝟏)] = 𝟐𝒚 − 𝟑𝒚[𝟒 − 𝟐𝒚 + 𝟐] = 𝟐𝒚 − 𝟑𝒚[𝟔 − 𝟐𝒚] = 𝟐𝒚 − 𝟑𝒚(𝟔) − 𝟑𝒚(−𝟐𝒚) = 𝟐𝒚 − 𝟏𝟖𝒚 + 𝟔𝒚𝟐 = −𝟏𝟔𝒚 + 𝟔𝒚𝟐 F. 𝟐(𝒙 − 𝟏) + 𝟑(𝟐𝒙 − 𝟑) − (𝟒𝒙 − 𝟓) = … … … … … … … …. Ex. Remove Parenthesis and combine like terms: A. 𝟐(𝟑𝒙𝟐 − 𝟐𝒙 + 𝟓) + (𝒙𝟐 + 𝟑𝒙 − 𝟕) = 𝟐(𝟑𝒙𝟐 ) + 𝟐(−𝟐𝒙) + 𝟐(𝟓) + 𝒙𝟐 + 𝟑𝒙 − 𝟕 = 𝟔𝒙𝟐 − 𝟒𝒙 + 𝟏𝟎 + 𝒙𝟐 + 𝟑𝒙 − 𝟕 = (𝟔 + 𝟏)𝒙𝟐 + (−𝟒 + 𝟑)𝒙 + (𝟏𝟎 − 𝟕) = 𝟕𝒙𝟐 − 𝒙 + 𝟑 Ø Factoring: Ex. 𝟏𝟑 = 𝟏𝟑. 𝟏 (𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓) 𝟑𝟎 = 𝟔. 𝟓 = 𝟐. 𝟑. 𝟓 (𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒆 𝒏𝒖𝒎𝒃𝒆𝒓) 𝒙𝟐 − 𝟒 = (𝒙 − 𝟐)(𝒙 + 𝟐) 𝑵𝒐𝒕 𝒑𝒓𝒊𝒎𝒆 𝒙 − 𝟐 = 𝑷𝒓𝒊𝒎𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝒊𝒕 𝒄𝒂𝒏@ 𝒕 𝒃𝒆 𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒂 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 𝒐𝒇 𝒕𝒘𝒐 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍𝒔 𝟐 11 __________ math114 § Factoring out common factors: Ex. Factor out, relative to the integers, all factors common to all terms: A. 𝟐𝒙𝟑 𝒚 − 𝟖𝒙𝟐 𝒚𝟐 − 𝟔𝒙𝒚𝟑 = 𝟐𝒙𝒚(𝒙𝟐 − 𝟒𝒙𝒚 − 𝟑𝒚𝟐 ) B. 𝟔𝒙𝟒 − 𝟖𝒙𝟑 − 𝟐𝒙𝟐 = … … … … … … … … … … … …. C. 𝒙𝟐 𝒚 + 𝟐𝒙𝒚𝟐 + 𝒙𝟐 𝒚𝟐 = … … … … … … … … … … …. D. 𝟐𝒙(𝟑𝒙 − 𝟐) − 𝟕(𝟑𝒙 − 𝟐) = (𝟑𝒙 − 𝟐)(𝟐𝒙 − 𝟕) E. 𝟐𝒘(𝒚 − 𝟐𝒛) − 𝒙(𝒚 − 𝟐𝒛) = … … … … … … … § Factoring by grouping: Ex. Factor completely, relative to the integers, by grouping: A. 𝟑𝒙𝟐 − 𝟔𝒙 + 𝟒𝒙 − 𝟖 = (𝟑𝒙𝟐 − 𝟔𝒙) + (𝟒𝒙 − 𝟖) = 𝟑𝒙(𝒙 − 𝟐) + 𝟒(𝒙 − 𝟐) = (𝒙 − 𝟐)(𝟑𝒙 + 𝟒) B. 𝒘𝒚 + 𝒘𝒛 − 𝟐𝒙𝒚 − 𝟐𝒙𝒛 = … … … … … … … …. C. 𝒙𝟐 + 𝟒𝒙 + 𝒙 + 𝟒 = (𝒙𝟐 + 𝒙) + (𝟒𝒙 + 𝟒) = 𝒙(𝒙 + 𝟏) + 𝟒(𝒙 + 𝟏) = (𝒙 + 𝟏)(𝒙 + 𝟒) D. 𝟑𝒂𝟐 − 𝟏𝟐𝒂𝒃 − 𝟐𝒂𝒃 + 𝟖𝒃𝟐 = (𝟑𝒂𝟐 − 𝟏𝟐𝒂𝒃) + (−𝟐𝒂𝒃 + 𝟖𝒃𝟐 ) = 𝟑𝒂(𝒂 − 𝟒𝒃) + 𝟐𝒃(−𝒂 + 𝟒𝒃) = 𝟑𝒂(𝒂 − 𝟒𝒃) − 𝟐𝒃(𝒂 − 𝟒𝒃) = (𝒂 − 𝟒𝒃)(𝟑𝒂 − 𝟐𝒃) E. 𝟖𝒂𝒄 + 𝟑𝒃𝒅 − 𝟔𝒃𝒄 − 𝟒𝒂𝒅 = … … … … … … … … … … … … … … …. Ex. Factor completely, relative to the integers: A. 𝒙𝟐 − 𝒙𝒚 + 𝟑𝒙𝒚 − 𝟑𝒚𝟐 = (𝒙𝟐 − 𝒙𝒚) + (𝟑𝒙𝒚 − 𝟑𝒚𝟐 ) = 𝒙(𝒙 − 𝒚) + 𝟑𝒚(𝒙 − 𝒚) = (𝒙 − 𝒚)(𝒙 + 𝟑𝒚) § Factoring second (2ed) degree polynomials: Ex. Factor each polynomial, if possible, using integer coefficients: A. 2𝑥 1 + 3𝑥𝑦 − 2𝑦 1 = (𝟐𝒙 − 𝒚)(𝒙 + 𝟐𝒚) 𝑪𝒉𝒆𝒄𝒌: (𝟐𝒙 − 𝒚)(𝒙 + 𝟐𝒚) = 𝟐𝒙(𝒙 + 𝟐𝒚) − 𝒚(𝒙 + 𝟐𝒚) = 𝟐𝒙𝟐 + 𝟒𝒙𝒚 − 𝒙𝒚 − 𝟐𝒚𝟐 = 2𝑥 1 + 3𝑥𝑦 − 2𝑦 1 B. 6𝑥 1 + 5𝑥𝑦 − 4𝑦 1 = (𝟑𝒙 + 𝟒𝒚)(𝟐𝒙 − 𝟏𝒚) 𝑪𝒉𝒆𝒄𝒌: (𝟑𝒙 + 𝟒𝒚)(𝟐𝒙 − 𝒚) = 𝟑𝒙(𝟐𝒙 − 𝒚) + 𝟒𝒚(𝟐𝒙 − 𝒚) = 𝟔𝒙𝟐 − 𝟑𝒙𝒚 + 𝟖𝒙𝒚 − 𝟒𝒚𝟐 = 6𝑥 1 + 5𝑥𝑦 − 4𝑦 1 C. 𝑥 1 − 3𝑥 + 4 = (𝒙 − 𝟐)(𝒙 − 𝟐) 𝑪𝒉𝒆𝒄𝒌: (𝒙 − 𝟐)(𝒙 − 𝟐) = 𝒙(𝒙 − 𝟐) − 𝟐(𝒙 − 𝟐) = 𝒙𝟐 − 𝟐𝒙 − 𝟐𝒙 + 𝟒 12 __________ math114 = 𝑥 1 − 4𝑥 + 4 × 𝑥 1 − 3𝑥 + 4 = (𝒙 − 𝟒)(𝒙 − 𝟏) 𝑪𝒉𝒆𝒄𝒌: (𝒙 − 𝟒)(𝒙 − 𝟏) = 𝒙(𝒙 − 𝟏) − 𝟒(𝒙 − 𝟏) = 𝒙𝟐 − 𝒙 − 𝟒𝒙 + 𝟒 = 𝑥 1 − 5𝑥 + 4 × ∴ 𝑥 1 − 3𝑥 + 4 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑎𝑏𝑙𝑒. Ex. Factor completely, relative to the integers. If a polynomial is prime relative to the integers, say so. A. 2𝑥 1 + 𝑥 − 3 = (𝟐𝒙 + 𝟑)(𝒙 − 𝟏) 𝑪𝒉𝒆𝒄𝒌: (𝟐𝒙 + 𝟑)(𝒙 − 𝟏) = 𝟐𝒙(𝒙 − 𝟏) + 𝟑(𝒙 − 𝟏) = 𝟐𝒙𝟐 − 𝟐𝒙 + 𝟑𝒙 − 𝟑 = 2𝑥 1 + 𝑥 − 3 B. 𝒙𝟐 + 𝟓𝒙𝒚 − 𝟏𝟒𝒚𝟐 = … … … … … … … … …. C. 𝟔𝒎𝟐 − 𝒎𝒏 − 𝟏𝟐𝒏𝟐 = … … … … … … … …. § Factoring by using special factoring formulas: Ex. Factor completely relative to the integers: A. 𝒙𝟐 + 𝟔𝒙𝒚 + 𝟗𝒚𝟐 = 𝒙𝟐 + 𝟐(𝒙)(𝟑𝒚) + 𝟗𝒚𝟐 = (𝒙 + 𝟑𝒚)𝟐 B. 𝒙𝟐 − 𝟔𝒙𝒚 + 𝟗𝒚𝟐 = 𝒙𝟐 − 𝟐(𝒙)(𝟑𝒚) + 𝟗𝒚𝟐 = (𝒙 − 𝟑𝒚)𝟐 C. 𝟗𝒙𝟐 − 𝟒𝒚𝟐 = (𝟑𝒙 − 𝟐𝒚)(𝟑𝒙 − 𝟐𝒚) D. 𝒙𝟑 − 𝒚𝟑 = (𝒙 − 𝒚)(𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐 ) E. 𝒎𝟑 + 𝒏𝟑 = (𝒎 + 𝒏)(𝒎𝟐 − 𝒎𝒏 + 𝒏𝟐 ) Ex. Factor completely, relative to the integers. If a polynomial is prime relative to the integers, say so. A. 𝟏𝟔𝒙𝟐 − 𝟐𝟓 = … … … … … …. B. 𝟖𝒎𝟑 − 𝟏 = 𝟐𝟑 𝒎𝟑 − 𝟏 = (𝟐𝒎 − 𝟏)((𝟐𝒎)𝟐 + 𝟐𝒎(𝟏) + 𝟏𝟐 ) = (𝟐𝒎 − 𝟏)(𝟐𝟐 𝒎𝟐 + 𝟐𝒎 + 𝟏)) = (𝟐𝒎 − 𝟏)(𝟒𝒎𝟐 + 𝟐𝒎 + 𝟏) C. 𝒙 + 𝒚 𝒛 = (𝒙 + 𝒚)(𝒙𝟐 − 𝒙𝒚𝒛 + 𝒚𝟐 𝒛𝟐 ) 𝟑 𝟑 𝟑 13 __________ math114 Chapter 1: Equations and Inequalities 1-1 Linear Equations and Applications Ø Solving Linear Equations: Ex. Solve each equation: A. 𝟓𝒙 − 𝟗 = 𝟑𝒙 + 𝟕 𝟓𝒙 − 𝟑𝒙 = 𝟕 + 𝟗 𝟐𝒙 = 𝟏𝟔 𝟐𝒙 𝟏𝟔 = 𝟐 𝟐 𝒙=𝟖 𝑪𝒉𝒆𝒄𝒌: 𝟓𝒙 − 𝟗 = 𝟑𝒙 + 𝟕 (𝒙 = 𝟖) 𝟓(𝟖) − 𝟗 = 𝟑(𝟖) + 𝟕 𝟒𝟎 − 𝟗 = 𝟐𝟒 + 𝟕 𝟑𝟏 = 𝟑𝟏 Ex. Solve each equation: A. 𝟏𝟎𝒙 − 𝟕 = 𝟒𝒙 − 𝟐𝟓 Check: 𝟏𝟎𝒙 − 𝟕 = 𝟒𝒙 − 𝟐𝟓(𝒙 = −𝟑) 𝟏𝟎𝒙 − 𝟒𝒙 = −𝟐𝟓 + 𝟕 𝟏𝟎(−𝟑) − 𝟕 = 𝟒(−𝟑) − 𝟐𝟓 𝟔𝒙 = −𝟏𝟖 −𝟑𝟎 − 𝟕 = −𝟏𝟐 − 𝟐𝟓 𝟔𝒙 $𝟏𝟖 𝟔𝒙 = 𝟔 −𝟑𝟕 = −𝟑𝟕 𝒙 = −𝟑 B. 𝟑(𝒙 + 𝟐) = 𝟓(𝒙 − 𝟔) 𝟑(𝒙) + 𝟑(𝟐) = 𝟓(𝒙) + 𝟓(−𝟔) 𝟑𝒙 + 𝟔 = 𝟓𝒙 − 𝟑𝟎 𝟑𝒙 − 𝟓𝒙 = −𝟑𝟎 − 𝟔 −𝟐𝒙 = −𝟑𝟔 6𝟐𝒙 6𝟑𝟔 = 6𝟐 6𝟐 𝒙 = +𝟏𝟖 Check: 𝟑(𝒙 + 𝟐) = 𝟓(𝒙 − 𝟔) (𝒙 = 𝟏𝟖) 𝟑(𝟏𝟖 + 𝟐) = 𝟓(𝟏𝟖 − 𝟔) 𝟑(𝟐𝟎) = 𝟓(𝟏𝟐) 𝟔𝟎 = 𝟔𝟎 14 __________ math114 𝟑𝒂6𝟒 𝟕6𝟐𝒂 C. 𝟓 − = 𝟓 𝟐 𝟑𝒂6𝟒 𝟕6𝟐𝒂 (𝟏𝟎)(𝟓) − (𝟏𝟎) ,. = (𝟏𝟎) ,. 𝟓 𝟐 𝟓𝟎 − 𝟐(𝟑𝒂 − 𝟒) = 𝟓(𝟕 − 𝟐𝒂) 𝟓𝟎 − 𝟔𝒂 + 𝟖 = 𝟑𝟓 − 𝟏𝟎𝒂 𝟓𝟖 − 𝟔𝒂 = 𝟑𝟓 − 𝟏𝟎𝒂 𝟏𝟎𝒂 − 𝟔𝒂 = 𝟑𝟓 − 𝟓𝟖 𝟒𝒂 = −𝟐𝟑 6𝟐𝟑 𝒂= 𝟒 𝟑𝒂$𝟒 𝟕$𝟐𝒂 $𝟐𝟑 Check: 𝟓 − 𝟓 = 𝟐 (𝒂 = 𝟒 ) 𝟏 𝟏 𝟓 − (𝟑𝒂 − 𝟒) = (𝟕 − 𝟐𝒂) 𝟓 𝟐 𝟏 $𝟐𝟑 𝟏 $𝟐𝟑 𝟓 − 7𝟑 7 8 − 𝟒8 = 𝟐 (𝟕 − 𝟐 7 8) 𝟓 𝟒 𝟒 𝟏 $𝟔𝟗 𝟏 𝟒𝟔 𝟓−𝟓7 𝟒 − 𝟒8 = (𝟕 + 𝟐 𝟒 ) 𝟏 $𝟔𝟗(𝟏)$𝟒(𝟒) 𝟏 𝟕(𝟒)3𝟒𝟔(𝟏) 𝟓−𝟓7 𝟒(𝟏) 8= ( 𝟐 𝟏(𝟒) ) 𝟏 $𝟔𝟗$𝟏𝟔 𝟏 𝟐𝟖3𝟒𝟔 𝟓−𝟓7 𝟒 8 = 𝟐( 𝟒 ) 𝟏 $𝟖𝟓 𝟏 𝟕𝟒 𝟓− 7 8= ( ) 𝟓 𝟒 𝟐 𝟒 𝟖𝟓 𝟕𝟒 𝟓 + 𝟐𝟎 = 𝟖 𝟓(𝟐𝟎)3𝟏(𝟖𝟓) 𝟕𝟒 = 𝟏(𝟐𝟎) 𝟖 𝟏𝟎𝟎3𝟖𝟓 𝟕𝟒 = 𝟐𝟎 𝟖 𝟏𝟖𝟓 𝟕𝟒 = 𝟐𝟎 𝟖 𝟓.𝟑𝟕 𝟐.𝟑𝟕 = 𝟓.𝟒 𝟐.𝟒 𝟑𝟕 𝟑𝟕 𝟒 = 𝟒 1-2 Linear Inequalities Ø Understanding Inequality and Interval Notation: Ex: Rewrite each of the following in inequality notation and graph on a real number line: A. [−𝟐, 𝟑) Solution: −𝟐 ≤ 𝒙 < 𝟑 B. (−𝟒, 𝟐) Solution: −𝟒 < 𝒙 < 𝟐 C. [−𝟐, ∞) Solution: 𝒙 ≥ −𝟐 D. (−∞, 𝟑) Solution: 𝒙 < 𝟑 E. [−𝟖, 𝟕] Solution: ………………. F. [−𝟔, ∞) Solution: ………………. 15 __________ math114 Ex. Rewrite each of the following in interval notation and graph on a real number line: A. −𝟐 < 𝒙 ≤ 𝟔 Solution: (−𝟐, 𝟔] The graph: …………………………….. B. 𝒙 ≤ −𝟐 Solution: (−∞, −𝟐] The graph: ……………………………. Ex. Rewrite each of the following in interval notation and in inequality notation: A. Solution: in interval notation [−𝟕, 𝟐) in inequality notation −𝟕 ≤ 𝒙 < 𝟐 Ex. If 𝑨 = (−𝟐, 𝟓) and 𝑩 = (𝟏, ∞), graph the sets𝑨 ∪ 𝑩 𝒂𝒏𝒅 𝑨 ∩ 𝑩 and write them in interval notation: Solution: Ø Solving Linear Inequalities: Ex. Solve and graph: A. 𝟕𝒙 − 𝟖 < 𝟒𝒙 + 𝟕 𝟕𝒙 − 𝟒𝒙 < 𝟕 + 𝟖 𝟑𝒙 < 𝟏𝟓 𝟑𝒙 𝟏𝟓 < 𝟑 𝟑 𝒙 < 𝟓 , 𝒙 ∈ (−∞, 𝟓) The graph: ……………………………. B. 𝟐(𝟐𝒙 + 𝟑) − 𝟏𝟎 < 𝟔(𝒙 − 𝟐) 𝟒𝒙 + 𝟔 − 𝟏𝟎 < 𝟔𝒙 − 𝟏𝟐 𝟒𝒙 − 𝟒 < 𝟔𝒙 − 𝟏𝟐 𝟒𝒙 − 𝟔𝒙 < −𝟏𝟐 + 𝟒 −𝟐𝒙 < −𝟖 6𝟐𝒙 6𝟖 6𝟐 > 6𝟐 𝒙 > 𝟒 , 𝒙 ∈ (𝟒, ∞) 16 __________ math114 The graph: 𝟐𝒙6𝟑 𝟒𝒙 C. +𝟔≥𝟐+ 𝟒 𝟑 𝟐𝒙6𝟑 𝟒𝒙 (𝟏𝟐) ,. + 𝟏𝟐(𝟔) ≥ 𝟏𝟐(𝟐) + (𝟏𝟐) ,. 𝟒 𝟑 𝟑(𝟐𝒙 − 𝟑) + 𝟕𝟐 ≥ 𝟐𝟒 + 𝟒(𝟒𝒙) 𝟔𝒙 − 𝟗 + 𝟕𝟐 ≥ 𝟐𝟒 + 𝟏𝟔𝒙 𝟔𝒙 + 𝟔𝟑 ≥ 𝟐𝟒 + 𝟏𝟔𝒙 𝟔𝒙 − 𝟏𝟔𝒙 ≥ 𝟐𝟒 − 𝟔𝟑 −𝟏𝟎𝒙 ≥ 𝟑𝟗 6𝟏𝟎𝒙 𝟑𝟗 ≤ 6𝟏𝟎 6𝟏𝟎 𝟑𝟗 𝟑𝟗 𝒙 ≤ 6𝟏𝟎 , 𝒙 ∈ (−∞, −𝟑. 𝟗) (6𝟏𝟎 = −𝟑. 𝟗) D. −𝟑 ≤ 𝟒 − 𝟕𝒙 < 𝟏 −𝟑 − 𝟒 ≤ 𝟒 − 𝟒 − 𝟕𝒙 < 𝟏𝟖 − 𝟒 −𝟕 ≤ −𝟕𝒙 < 𝟏𝟒 6𝟕 6𝟕𝒙 𝟏𝟒 ≥ > 6𝟕 6𝟕 6𝟕 𝟏 ≥ 𝒙 > −𝟐 , 𝒙(−𝟐, 𝟏] E. −𝟒 < 𝟓𝒕 + 𝟔 ≤ 𝟐𝟏 Solution: ……………………….. 1-5 Quadratic Equations (𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎, 𝒂 ≠ 𝟎) Ø Solving quadratic equations by factoring: Ex: Solve each equation by factoring: A. (𝒙 − 𝟓)(𝒙 + 𝟑) = 𝟎 Solution: 𝑥 − 5 = 0 𝑂𝑟 𝑥 + 3 = 0 𝑥 = +5 𝑜𝑟 𝑥 = −3 Solution set = {−3, +5} B. 𝟔𝒙𝟐 − 𝟏𝟗𝒙 − 𝟕 = 𝟎 (2𝑥 − 7)(3𝑥 + 1) = 0 Check: 6𝑥 ! − 19𝑥 − 7 = (2𝑥 − 7)(3𝑥 + 1) 2𝑥 − 7 = 0 𝑂𝑟 3𝑥 + 1 = 0 = 2𝑥(3𝑥 + 1) − 7(3𝑥 + 1) 2𝑥 = +7 𝑜𝑟 3𝑥 = −1 = 6𝑥 ! + 2𝑥 − 21𝑥 − 7 45 6 75 $8 = 𝑂𝑟 = = 6𝑥 ! − 19𝑥 − 7 4 4 7 7 6 $8 𝑥 = 4 𝑂𝑟 𝑥 = 7 $8 6 Solution set= { 7 , 4} 17 __________ math114 C. 𝒙𝟐 − 𝟔𝒙 + 𝟓 = −𝟒 𝑥 4 − 6𝑥 + 5 + 4 = 0 𝑥 4 − 6𝑥 + 9 = 0 (𝑥 − 3)(𝑥 − 3) = 0 Check: 𝑥 ! − 6𝑥 + 9 = (𝑥 − 3)(𝑥 − 3) 𝑥 − 3 = 0 𝑂𝑟 𝑥 − 3 = 0 = 𝑥(𝑥 − 3) − 3(𝑥 − 3) 𝑥 = +3 𝑂𝑟 𝑥 = +3 = 𝑥 ! − 3𝑥 − 3𝑥 + 9 Solution set= {3} = 𝑥 ! − 6𝑥 + 9 D. 𝟑𝒘𝟐 + 𝟏𝟑𝒘 = 𝟏𝟎 (Practice: the students can solve it by the same idea of C) E. 𝟐𝒙𝟐 = 𝟑𝒙 2𝑥 4 − 3𝑥 = 0 𝑥(2𝑥 − 3) = 0 𝑥 = 0 𝑂𝑟 2𝑥 − 3 = 0 𝑥 = 0 0𝑟 2𝑥 = +3 45 7 𝑥 = 0 𝑂𝑟 4 = 4 3 𝑥 = 0 𝑂𝑟 𝑥 = 2 7 Solution set= {0, } 4 F. 𝟐𝒙𝟐 = 𝟖𝒙 (Practice: the students can solve it by the same idea of E) G. −𝟖 = 𝟐𝟐𝒕 − 𝟔𝒕𝟐 6𝑡 4 − 22𝑡 − 8 = 0 (2𝑡 − 8)(3𝑡 + 1) = 0 Check: 6𝑡 ! − 22𝑡 − 8 = (2𝑡 − 8)(3𝑡 + 1) 2𝑡 = +8 𝑂𝑟 3𝑡 = −1 = 2𝑡(3𝑡 + 1) − 8(3𝑡 + 1) 49 : 79 $8 4 = 4 𝑂𝑟 7 = 7 = 6𝑡 ! + 2𝑡 − 24𝑡 − 8 $8 𝑡 = 4 𝑂𝑟 𝑡 = = 6𝑡 ! − 22𝑡 − 8 7 $8 Solution set= { , 4} 7 Ø Solving quadratic equations by quadratic formula: 6𝒃±=𝒃𝟐 6𝟒𝒂𝒄 If 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 then 𝒙 = 𝟐𝒂 Ex. Solve each equation using the quadratic formula: A. 𝒙𝟐 = 𝟑𝒙 + 𝟏 𝑥 " − 3𝑥 − 1 = 0 𝑎 = 1, 𝑏 = −3, 𝑐 = −1 #$±√$ ! #'() 𝑥= "( −(−3) ± 3(−3)" − 4(1)(−1) 𝑥= 2(1) +3 ± √9 + 4 𝑥= 2 3 ± √13 𝑥= 2 7$√87 73√87 Solution set= { , } 4 4 18 __________ math114 B. 𝒙𝟐 − 𝟐𝒙 − 𝟏 = 𝟎 𝑎 = 1, 𝑏 = −2, 𝑐 = −1 −𝑏 ± √𝑏/ − 4𝑎𝑐 𝑥= 2𝑎 −(−2) ± 1(−2)/ − 4(1)(−1) 𝑥= 2(1) 2 ± √4 + 4 𝑥= 2 2 ± √8 𝑥= 2 2 ± √4.2 𝑥= 2 2 ± √4√2 𝑥= 2 2 ± 2√2 𝑥= 2 2(1 ± √2 ) 𝑥= 2 𝑥 = 1 ± √2 Solution set= {1 − √2 , 1 + √2} 𝟑 C. 𝟐𝒙 + = 𝒙𝟐 𝟐 3 (2)(2𝑥) + (2) 8 9 = (2)(𝑥 " ) 2 4𝑥 + 3 = 2𝑥 " 2𝑥 4 − 4𝑥 − 3 = 0 𝑎 = 2, 𝑏 = −4, 𝑐 = −3 01±31 ! 0456 𝑥= /5 −(−4) ± 1(−4)/ − 4(2)(−3) 𝑥= 2(2) +4 ± √16 + 24 𝑥= 4 4 ± √40 𝑥= 4 4 ± √4.10 𝑥= 4 4 ± √4√10 𝑥= 4 4 ± 2√10 𝑥= 4 2(2 ± √10 ) 𝑥= 4 2 ± √10 𝑥= 2 4$√8< 43√8< Solution set= { 4 , 4 } 19 __________ math114 Ex. Solve each equation by any method: A. 𝟏𝟐𝒙𝟐 + 𝟕𝒙 = 𝟏𝟎 4 12𝑥 + 7𝑥 − 10 = 0 (3𝑥 − 2)(4𝑥 + 5) = 0 Check: 12𝑥 ! + 7𝑥 − 10 = (3𝑥 − 2)(4𝑥 + 5) 3𝑥 − 2 = 0 𝑂𝑟 4𝑥 + 5 = 0 = 3𝑥(4𝑥 + 5) − 2(4𝑥 + 5) 3𝑥 = +2 𝑂𝑟 4𝑥 = −5 = 12𝑥 ! + 15𝑥 − 8𝑥 − 10 *+ " '+ #, * = * 𝑂𝑟 ' = ' = 12𝑥 ! + 7𝑥 − 10 2 −5 𝑥 = 𝑂𝑟 𝑥 = 3 4 #, " Solution set= { ' , *} B. (𝟐𝒚 − 𝟑)𝟐 = 𝟓 24 𝑦 4 − 2(2𝑦)(3) + 34 = 5 4𝑦 4 − 12𝑦 + 9 = 5 4𝑦 4 − 12𝑦 + 9 − 5 = 0 4𝑦 4 − 12𝑦 + 4 = 0 𝑎 = 4, 𝑏 = −12, 𝑐 = 4 $=±√= : $?@A 𝑦= 4@ $($84)±B($84): $?(?)(?) 𝑦= 4(?) 384±√8??$C? 𝑦= : 84±√8??$C? 𝑦= : 84±√:< 𝑦= : 84±√8C.D 𝑦= : 84±√8C√D 𝑦= : 84±?√D 𝑦= : 4(7±√9) 𝑦= : 7±√D 𝑦= 4 7$√D 73√D Solution set= { 4 , 4 } 20 __________ math114 Chapter 3: Functions 3-1 Functions Ø Definition of a function: Ex. Determine whether each set specifies a function. If it does, then state the domain and the range? A. S= {(1,4), (2,3), (3,2), (4,3), (5,4)} Solution: yes, it is a function, because all the ordered pairs in S have distinct first components. 𝐷𝑜𝑚𝑎𝑖𝑛 = {1, 2, 3, 4, 5} 𝑅𝑎𝑛𝑔𝑒 = {4,3,2} B. T= {(1,4), (2,3), (3,2), (2,4), (1,5)} Solution: No, it is not a function, because there are ordered pairs in T with the same first component [for example, (1, 4) and (1, 5)]. C. {(10, -10), (5, -5), (0,0), (5,5), (10,10)} (practice: the students can solve C by the same idea of B) Ex. Indicate whether each set defines a function. Find the domain and the range of each function? A. {(-1,4), (0,3), (1,2), (2,1)} Solution: yes, it is a function, because all the ordered pairs in this set have distinct first components. 𝐷𝑜𝑚𝑎𝑖𝑛 = {−1, 0, 1, 2} 𝑅𝑎𝑛𝑔𝑒 = {4, 3, 2, 1} B. {(2,4), (3,6), (4,8), (5,10)} (practice: the students can solve B by the same idea of A) Ø Definition a function by equations: Ex: 𝐹(𝑥) = 𝑥 4 − 4 𝑦 = 𝑥4 − 4 Evaluating Function: 𝟏𝟓 Ex.1: A. Find 𝑓(6), 𝑓(𝑎), 𝑎𝑛𝑑 𝑓(6 + 𝑎) 𝑓𝑜𝑟 𝒇(𝒙) = 𝒙$𝟑 8D 8D 𝒇(𝟔) = 𝟔$7 = 7 =5 15 𝒇(𝒂) = 𝒂−3 15 15 𝒇(𝟔 + 𝒂) = = 𝟔+𝒂−3 𝑎+3 B. Find 𝑔(7), 𝑔(ℎ), 𝑎𝑛𝑑 𝑔(7 + ℎ) 𝑓𝑜𝑟 𝒈(𝒙) = 𝟏𝟔 + 𝟑𝒙 − 𝒙𝟐 𝒈(𝟕) = 16 + 3(𝟕) − (𝟕)/ = 16 + 21 − 49 = 37 − 49 = −12 𝒈(𝒉) = 16 + 3(𝒉) − 𝒉/ = 16 + 3ℎ − ℎ/ 𝒈(𝟕 + 𝒉) = 16 + 3(𝟕 + 𝒉) − (𝟕 + 𝒉)/ = 16 + 21 + 3ℎ − (7/ + 2(7)(ℎ) + ℎ/ ) = 16 + 21 + 3ℎ − (49 + 14ℎ + ℎ/ ) = 16 + 21 + 3ℎ − 49 − 14ℎ − ℎ/ = −12 − 11ℎ − ℎ/ 21 __________ math114 𝟐 C. Find 𝐾(9), 4𝐾(𝑎), 𝑎𝑛𝑑 𝐾(4𝑎) 𝑓𝑜𝑟 𝑲(𝒙) = √𝒙0𝟐 2 2 2 𝑲(𝟗) = = = =2 √9 − 2 3 − 2 1 2 4∙2 8 𝟒𝑲(𝒂) = 4 O P= = √𝑎 − 2 √𝑎 − 2 √𝑎 − 2 2 2 2 2 1 𝑲(𝟒𝒂) = = = = = √4𝑎 − 2 √4√𝑎 − 2 2√𝑎 − 2 2(√𝑎 − 1) √𝑎 − 1 Ex.2: A. Let 𝒇(𝒙) = 𝟑𝒙 − 𝟓 𝑓𝑖𝑛𝑑 𝑓(3), 𝑓(ℎ), 𝑓(3) + 𝑓(ℎ), 𝑓(3 + ℎ) 𝒇(𝟑) = 3(𝟑) − 5 = 9 − 5 = 4 𝒇(𝒉) = 3𝒉 − 5 𝒇(𝟑) + 𝒇(𝒉) = 4 + (3ℎ − 5) = 4 + 3ℎ − 5 = −1 + 3ℎ 𝒇(𝟑 + 𝒉) = 3(𝟑 + 𝒉) − 5 = 9 + 3ℎ − 5 = 4 + 3ℎ B. Let 𝑓(𝑤) = −𝑤 / + 2𝑤 𝑓𝑖𝑛𝑑 𝑓(4), 𝑓(−4), 𝑓(4 + 𝑎), 𝑓(2 − 𝑎) (practice: the students can solve B by the same idea of Ex.1 & Ex.2) Finding the Domain of a Function: Ex: Find the domain of the function defined by the equation: 𝑦 = √𝑥 − 3 , assuming x is the independent variable. Solution: for 𝑦 to be real, 𝑥 − 3 ≥ 0 ⇒ 𝑥 ≥ +3 ∴ The domain of y is 𝑥 ≥ 3 𝑜𝑟 𝑥 ∈ [3, ∞) 𝑜𝑟 {𝑥|𝑥 ≥ 3} Ex: Find the domain of each of the following function. Express the answer in both set notation and inequality notation?

Use Quizgecko on...
Browser
Browser