Life Processes PDF
Document Details
Uploaded by GodlikeFrenchHorn
Tags
Summary
This document discusses life processes, focusing on nutrition and autotrophic nutrition. It explains how organisms obtain energy and materials from food and the process of photosynthesis in autotrophs. The document also mentions the criteria for defining something as alive and the importance of processes essential for maintaining life.
Full Transcript
design in multi-cellular organisms are followed, a specialised tissue for excretion will be developed, which means that the transportation system will need to transport waste away from cells to this excretory tissue. Let us consider these various processes, so essential to maintain life, one by...
design in multi-cellular organisms are followed, a specialised tissue for excretion will be developed, which means that the transportation system will need to transport waste away from cells to this excretory tissue. Let us consider these various processes, so essential to maintain life, one by one. Q U E S T 1I O N S ? 1. Why is diffusion insufficient to meet the oxygen requirements of multi- ed cellular organisms like humans? 2. What criteria do we use to decide whether something is alive? 3. What are outside raw materials used for by an organism? 4. What processes would you consider essential for maintaining life? h pu T 6.2 NUTRITION is When we walk or ride a bicycle, we are using up energy. Even when we re R are not doing any apparent activity, energy is needed to maintain a state of order in our body. We also need materials from outside in order bl to grow, develop, synthesise protein and other substances needed in E the body. This source of energy and materials is the food we eat. How do living things get their food? be C The general requirement for energy and materials is common in all organisms, but it is fulfilled in different ways. Some organisms use simple food material obtained from inorganic sources in the form of carbon o N dioxide and water. These organisms, the autotrophs, include green plants and some bacteria. Other organisms utilise complex substances. These complex substances have to be broken down into simpler ones before they can be used for the upkeep and growth of the body. To © achieve this, organisms use bio-catalysts called enzymes. Thus, the heterotrophs survival depends directly or indirectly on autotrophs. Heterotrophic organisms include animals and fungi. 6.2.1 Autotrophic Nutrition Carbon and energy requirements of the autotrophic organism are fulfilled by photosynthesis. It is the process by which autotrophs take in substances from the outside and convert them into stored forms of energy. This material is taken in the form of carbon dioxide and water tt which is converted into carbohydrates in the presence of sunlight and chlorophyll. Carbohydrates are utilised for providing energy to the plant. We will study how this takes place in the next section. The carbohydrates which are not used immediately are stored in the form of starch, which no serves as the internal energy reserve to be used as and when required by the plant. A somewhat similar situation is seen in us where some of the energy derived from the food we eat is stored in our body in the form of glycogen. Life Processes 95 Let us now see what actually happens during the process of photosynthesis. The following events occur during this process – (i) Absorption of light energy by chlorophyll. (ii) Conversion of light energy to chemical energy and splitting of water molecules ed into hydrogen and oxygen. (iii) Reduction of carbon dioxide to carbohydrates. These steps need not take place one after the other immediately. For example, desert h plants take up carbon dioxide at night and pu T prepare an intermediate which is acted upon is by the energy absorbed by the chlorophyll during the day. re R Let us see how each of the components of the above reaction are necessary for bl photosynthesis. E If you carefully observe a cross-section of a leaf under the microscope (shown in Fig. 6.1), you will notice that some cells contain green be C dots. These green dots are cell organelles called chloroplasts which contain chlorophyll. Let us Figure 6.1 do an activity which demonstrates that Cross-section of a leaf chlorophyll is essential for photosynthesis. o N Activity 6.1 © n Take a potted plant with variegated leaves – for example, money plant or crotons. n Keep the plant in a dark room for three days so that all the starch gets used up. n Now keep the plant in sunlight for about six hours. n Pluck a leaf from the plant. Mark the green areas in it and trace them on a sheet of paper. n Dip the leaf in boiling water for a few minutes. n After this, immerse it in a beaker containing alcohol. n Carefully place the above beaker in a water-bath and heat till the alcohol begins to boil. tt n What happens to the colour of the leaf? What is the colour of the solution? n Now dip the leaf in a dilute solution of iodine for a few minutes. n Take out the leaf and rinse off the iodine solution. no n Observe the colour of the leaf and compare this with the tracing of Figure 6.2 the leaf done in the beginning (Fig. 6.2). Variegated leaf (a) before n What can you conclude about the presence of starch in various areas and (b) after starch test of the leaf? 96 Science Now, let us study how the plant obtains carbon dioxide. In Class IX, we had talked about stomata (Fig. 6.3) which are tiny pores present on the surface of the leaves. Massive amounts of gaseous exchange takes place in the leaves through these pores for the purpose of photosynthesis. But it is important to note here that exchange of gases occurs across the surface of ed stems, roots and leaves as well. Since large amounts of water can also be lost through these stomata, the plant Figure 6.3 (a) Open and (b) closed stomatal pore closes these pores when it does not need carbon dioxide for photosynthesis. The opening and closing of the h pore is a function of the guard cells. The guard cells swell when water pu T flows into them, causing the stomatal pore to open. Similarly the pore is closes if the guard cells shrink. re R Activity 6.2 bl n Take two healthy potted plants E which are nearly the same size. n Keep them in a dark room for three days. be C n Now place each plant on separate glass plates. Place a watch-glass containing potassium hydroxide by the side of one of o N the plants. The potassium hydroxide is used to absorb carbon dioxide. n Cover both plants with separate (a) (b) © bell-jars as shown in Fig. 6.4. n Use vaseline to seal the bottom Figure 6.4 Experimental set-up (a) with potassium of the jars to the glass plates so hydroxide (b) without potassium hydroxide that the set-up is air-tight. n Keep the plants in sunlight for about two hours. n Pluck a leaf from each plant and check for the presence of starch as in the above activity. n Do both the leaves show the presence of the same amount of starch? n What can you conclude from this activity? Based on the two activities performed above, can we design an tt experiment to demonstrate that sunlight is essential for photosynthesis? So far, we have talked about how autotrophs meet their energy requirements. But they also need other raw materials for building their no body. Water used in photosynthesis is taken up from the soil by the roots in terrestrial plants. Other materials like nitrogen, phosphorus, iron and magnesium are taken up from the soil. Nitrogen is an essential element used in the synthesis of proteins and other compounds. This is Life Processes 97