Fluid Mechanics & Hydraulics Review Notes PDF

Summary

These review notes cover fluid mechanics and hydraulics, providing formulas and concepts related to properties of fluids, hydrostatics, and related topics. The text includes formulas and examples.

Full Transcript

## Fluid Mechanics & Hydraulics Review Notes ### Chapter 1: Properties of Fluids | Concept | Formula | Notes | | --------------- | ------------------ | ----------------------------------------------------------...

## Fluid Mechanics & Hydraulics Review Notes ### Chapter 1: Properties of Fluids | Concept | Formula | Notes | | --------------- | ------------------ | --------------------------------------------------------------------------------- | | Unit Weight | Y = W/V = pg | | | Mass Density | p = M/V | Rair = 287 J/kg-°K | | Specific Volume | Vs = 1/p | | | Specific Gravity | Sliquid = Yliquid/Ywater, Sgas = Ygas/Yair | Pwater = 1000 kg/m³<br>Ywater = 9810 N/m³<br>Pair = 1.225 kg/m³<br>Yair = 12 N/m³ | | Dynamic Viscosity | τ = F/A, μ = dV/dy = U/y | 0.1 Pas = 1 poise | | Kinematic Viscosity | v = μ/p | 0.0001 m²/s = 1 stoke | | Droplet Pressure | p = 4σ/d | | | Capillarity | h = 4σcos(θ)/dy | | | Compressibility | β = AV/VΔp | | | Bulk Modulus of Elasticity | 1/β = Eв = 1/β | | | Celerity | c = √Eв/p | | | Gas Law | P₁V₁ = P₂V₂ | T°K = °C + 273 | | Gas Law (Adiabatic, Isentropic) | P₁V₁ᵏ = P₂V₂ᵏ, T₂/T₁ = (P₂/P₁)ᵏ⁻¹ | k = adiabatic exponent | ### Chapter 2: Principles of Hydrostatics | Concept | Formula | Notes | | --------------- | --------------------- | ---------------------------------------------------------------------------------------- | | Pressure | p = F/A | Acts normal to the area | | Pascal's Law | | Pressure on a fluid is equal in all directions and in all parts of the container | | Gage Pressure | | pressures above or below the atmosphere and can be measured by pressure gauges or manometer | | Atmospheric Pressure | Patm = 101.325 kPa = 14.7 psi | | | Absolute Pressure | Pabs = Patm + Pgage | | | Fluid Pressure | p = yh | Any change in pressure at point A would cause an equal change at another point B<br>If a point lies on the free liquid surface, then the gage pressure at that point is zero | | Pressure Below Layers of Fluids | p = ∑ynhn | If two points lie on the same elevation, then their pressure is also the same | ### Chapter 3: Total Hydrostatic Force on Surfaces | Concept | Formula | Notes | | --------------- | --------------------------- | ----------------------------------------------------------------------------------------------- | | Force due to Pressure | F = pA | Acts normal to the area | | Hydrostatic Force on Inclined Surfaces | F = yhA or F = PcgA, e = Icg/Ay | Fh = уҺА ог FH = PcgA<br>Fy = yV<br>"Any body immersed in a fluid is acted upon by an upward force (buoyant force) equal to the weight of the displaced fluid" | | Hydrostatic Force on Curved Surfaces | | | | Archimedes’ Principle | | BF = YVD | | Buoyant Force | | Buoyant Force only happens when liquid is also present under a body | | Stability of Floating Bodies | MG MB GB, MB'= 1+1/2D/I * tan² (θ) RM or OM = Wx = W(MGsine) | +MG = stable, MG = unstable | ### Chapter 4: Relative Equilibrium of Liquids | Concept | Formula | Notes | | --------------- | ------------------------------------------- | ------------------------------------------------------------------------------------------------------------ | | Horizontal Rectilinear Translation | REF = ma, N = W = mg, tan θ = a/g | Fluid mass in horizontal accelerated motion | | Inclined Rectilinear Motion | REF = ma, W = mg, tan θ = ax/(g±ay) | | | Vertical Rectilinear Motion | REF = ma, W = V, Area = A, F = PA, p = yh(1 ± rω²/g) | | | Rotating Motion | tan θ = ω²x/g, y = ω²x²/2g | For Closed Cylindrical Vessel: When y > H²/2D, Depth of Water in the Tank when Rotation Stop: H²/(2y) | ### Chapter 5: Fundamentals of Fluid Flow | Concept | Formula | Notes | | --------------- | --------------------------------------------------- | -------------------------------------------------------------------------------------------- | | Discharge or Flow Rate | Q = Av, M = pQ, W = YQ | Q = volume flow rate<br>M = mass flow rate<br>W = weight flow rate | | Continuity Equation | Q = A₁V₁ = A₂V₂ = constant, Q = P₁A₁V₁ = P₂A₂V₂ = constant, Q = Y₁A₁V₁ = Y₂A₂V₂ = constant | incompressible Fluids:<br>Compressible Fluids:<br> | | Bernoulli’s Energy Theorem | E₁ = E₂, Vp₁/2g + P₁/Y + Z₁ = Vp₂/2g + P₂/Y + Z₂ | v²/2g = kinetic head<br>P/Y = pressure head<br>z = elevation head | | Power and Efficiency | P = YQE, Eff = Output/Input | | | Energy Head Gains and Losses | E₁ + Hp - HF - H₁ = E₂ | Hp = pump head gain<br>HF = friction head loss<br>H₁ = turbine head loss | ### Chapter 6: Fluid Flow Measurement | Concept | Formula | Notes | | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Device Coefficients | C = Q/QT, Cc = A/AT, Cv = V/VT, HL = 2*(1 - Cc)*(1 - Cc) * v²/2g | Coefficient = Actual/Theoretical<br>C = CcCv<br>When A₁ is significantly greater than A₂ make (1/A₂) = 1 <br>H = total head producing flow <br>PA - PB/Y + v²/2g<br>Section at which the contraction of the je ceases | | Orifice Velocity | v = √2gH | | | Vena Contrata | Occurs at from the upstream face | | | Orifices under Low Heads | Q = C√2gL[H₁³/² - H₂³/²] | From: Q = CAv<br>dQ = CdAv → dQ = CdA√2gH | | Unsteady Flow Discharge Time | t = 2As/(CA√2g) | From: V = Qdt<br>dV = dQdt → dt = dV/dQ | | Unsteady Flow Two Connected Tanks Discharge Time | t = 2AHS(H₁ - H₂)/(CA√2g) | AsdH/dt = CA√2gH → t = H₁/CA√2g H2/ CA√2g, VH = As1As2/(As1 + As2) | | Weirs | Discharge General Formula: dQ = CdA√2gH → Q = H₁/H2 * CA(H)/2gHdH<br>Q = C√2g•LH³/² = CWLH³/²<br>Q = 1.84LH³/²<br>C√2g LH³/² = Cw tan(θ/2)H⁵/² <br>Q = 4/15 * C√2g LH³/² = Cw tan(θ/2) H⁵/² | From: Q = CAv → Q = CA√2gH Express area A as a function of head H<br>Cw = C√2g<br>For Contracted Weirs: L=L-0.1H → Singly Contracted, Le L-0.2H → Doubly Contracted<br>Considering Velocity of Approach: use H+v²/2g as H³/²<br>L = 2 Htan(θ/2)<br>Cw = C√2g<br>Cipolletti Weirs have 1H:4V slopes<br>From: V = Q/t →t = H₁/H2 * A√dH/Q Express V and Q as a function of head H | | Unsteady Flow in Weirs | t = H₁/H2 * AdH/Q | | ### Chapter 7: Fluid Flow in Pipes | Concept | Formula | Notes | | --------------- | -------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | Reynold's Number | Re = vD/μ = vDρ/μ | v = mean velocity<br>v = kinematic viscosity<br>ρ = dynamic viscosity<br>D = pipe diameter<br>For non-circular pipes: D = 4R<br>From other sources: Transition to Turbulence is at Re = 2300 | | Flow Type | Re < 2000 → Laminar<br>Re > 2000 → Turbulent<br>Re = 2000 → Critical Velocity, For Laminar Flow: f = 64/Re | | | Friction Factor Values | For Turbulent Flow: f = 0.25log(ɛ/D/3.7 + 5.74/Re⁰.⁹)²<br>For Laminar Flow: f = 64/Re<br>For Turbulent Flow: Le = 4.4DR¹/⁶<br>For Laminar Flow: Le = 0.06DRe | ɛ = absolute roughness<br>ɛ/D = relative roughness | | Entrance Length | | | | Velocity Distributions in Pipes | u = Vc (1 - (r/R)²) <br>For Turbulent Flow: v = vc - 3.75 * (vc√f)log(R/(R-r)) <br>vc = v(1 + 1.33√f) <br>u = vc - 5.75 (yc/ρL) * log(R/(R-r)) | v = average velocity<br>vc = max velocity<br>u = velocity at distance r | | Shearing Stress in Pipes | τs = yh, τs = yh/2L | Max shearing stress is at pipe walls: r = R | | Major Head Loss: Darcy-Wiesbach | General: hf = fLv²/D * 2g, hf = 0.0826fLQ²/D⁵ | Derived from: V = -R²S²<br> hf = L/A × S² | | Major Head Loss: Manning | General: hf = 6.35n²Lv²/D³, hf = 10.29n²LQ²/D³ | hf = L/A × S² | | Major Head Loss: Hazen Williams | General: hf = 1.354LQ¹.⁸⁵/C₁.⁸⁵R¹.₁⁶⁷A¹.⁸⁵, hf = 10.67LQ¹.⁸⁵/C₁.⁸⁵D⁴.⁸⁷ | Derived from: v = 0.849C₁R⁰.⁶³ S⁰.⁵⁴ | | Minor Head Losses | hf = kmv²/2g | km = minor hf coefficient | ### Chapter 8: Open Channel | Concept | Formula | Notes | | --------------- | --------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Specific Energy | H = v²/2g + d | Energy per unit weight relative to the bottom of the channel<br>A = area<br>R = hydraulic radius = A/Pw | | Chézy Formula | v = CR¹/²S¹/², Q = ACR¹/²S¹/² | C = Chézy coefficient<br>S = slope = h/L | | Chézy Coefficients | Kutter and Ganguillet Formula: C = 1/n + 23 + 0.00155/S + (23 + 0.00155)/(1 + √S)<br>Manning Formula: C = 1/n * R¹⁶<br>Bazin Formula: C = 87/(1 + m/√R)<br>Powell Formula: C = -42 log(n/√R) | n = roughness coefficient<br>m = Bazin coefficient<br>R = hydraulic radius<br>ɛ = roughness<br>Re = Reynolds number<br>S = slope of energy grade line | | Uniform Flow | S = So (slope of channel bed) | The velocity, depth of flow, and cross-sectional area of flow at any point of the stream is constant. | | Boundary Shear Stress | τo = yRS | | | Normal Depth | dn occurs when S = So | Note that A, n, and S are constant, therefore, to maximize Q, R must be maximized. R can be maximized when Pw is minimum for a given A. QxR → Q&A/Pw | | Most Efficient Cross Sections | Using Chézy-Manning Formula: v = 1/n * R²/³S¹/² Q = A * R²/³S¹/²<br>Rectangular Section: T = 2d, R= d/2 <br>Triangular Section: T = 2d, θ = 90°, R = d/2√2<br>Trapezoidal Section: T = 2s, R = d/2<br>Circular Section: Qmax = occurs when d = 0.938D, Vmax = occurs when d = 0.820D | T = top width<br>d = depth<br>s = sides | | Velocity Distribution in Open Channel | u= v + √gys(1 + 2.3log(y/h)) | v = depth of flow<br>y = depth of water in channel<br>u = velocity at distance y'from bed<br>K = Kármán constant<br>v = mean velocity of flow<br>S = slope of EGL | ### Chapter 9: Hydrodynamics | Concept | Formula | Notes | | ------------------- | ------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------ | | Reaction Against Flat Plates | For Fixed Plates: R=pQv<br>For Moving Plates: R=pQ'u | F=ma =(pv)(2-1)/t<br>p = density of fluid<br>Q = discharge<br>v = velocity of liquid<br>v' = velocity of plate<br>u = relative velocity = v - v'<br>Q' = relative discharge = Au | | Force Against Vanes | For Fixed Vanes: Fx = pQ(V₁x-V₂x), Fy=pQ(V₁y-V₂y), F=√Fx²+Fy², Ф = tan⁻¹(Fy/Fx)<br>For Moving Vanes: Fx = pQ'(V₁x - V₂x), Fy = pQ'(V₁y - V₂y), F =√Fx²+Fy², Ф = tan⁻¹(Fy/Fx) | V₂x = v' + ucosθ<br>p = density of fluid<br>Q = discharge<br>v = velocity of liquid<br>v' = velocity of plate<br>u = relative velocity = v - v'<br>Q' = relative discharge = Au<br>For Fixed Vanes: F = 2pAv² sin θ<br>For Moving Vanes: Fy = pAu²(1 - cos θ), F₂y = -pAu² sin θ | | Forces Developed in Pipes | Fx = ΣpQ(V₂x - V₁x), Fy = ΣpQ(V₂y - V₁y), R=√Rx²+Ry², Ф = tan⁻¹(Ry/Rx) | F = pA | ### Chapter 10: Deep Foundations (Cohesive Soil) | Concept | Formula | Notes | | ------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Ultimate Capacity of a Single Pile | Ultimate Bearing Capacity of Pile | Qb = CNcAtip = 9cAtip | N = 9<br>c = cohesion of soil<br>Atip = cross-sectional area of pile | | Ultimate Frictional Capacity of Pile (a method) | Qf = cLaP | c = cohesion of soil<br>L = length of pile<br>a = adhesion factor (1 if not given)<br>P = perimeter of pile | | Ultimate Frictional Capacity of Pile (β method) | Qf = PLẞσε | P = perimeter of pile<br>L = length of pile<br>β = frictional coefficient<br>For normally consolidated clay: β = (1 - sin φ)tan φ<br>For over consolidated clay: β = (1 - sin φ)tan φVOCR | | Ultimate Frictional Capacity of Pile (λ method) | Qf = PLA(σε + qu) | P = perimeter of pile<br>L = length of pile<br>λ = frictional coefficient<br>qu = unconfined compression strength<br>qu= Cu/2<br>Cu = unconfined shear strength/cohesion<br>σε = effective/average stress at mid - height of the clay | | Ultimate Capacity of Pile | Qult = Qb + Qf | | | Allowable Capacity of Pile | Qall = Qult / FS | | | Individual Action | Qult = (Qb + QF) × n | | | Block Action | Qult = (Qb(block) + Qf(block)) × n | | | Group Action | Qult = (Qb + QF) × n | | | Ultimate Capacity of Group Piles | Qall = Qall(single) × Eff, Eff = 2(m + n²/2)S + 4D, Eeff = πDmn | m = number of pile columns n = number of pile rows S = spacing of pile D = diameter of pile | ### Chapter 11: Slope Stability | Concept | Formula | Notes | | ------------------- | ----------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------ | | Infinite Slope (Clay Soil) | No Water Pressure: FS = C / tan φ + γH cos² βtan β / tan φ <br>With Water Pressure: FS = C / Yefftan φ + YsatH cos² βtan β / Ysat tan φ | FS = factor of safety<br>c = cohesion of soil<br>H = height of soil<br>β = angle that the slope makes with the horizontal<br>φ = angle of friction of soil <br>y = unit weight of soil<br>Ysat = saturated unit weight of soil<br>Yeff = ysat-yw | | Infinite Slope (Sandy Soil) | Without Seepage: FS = tan φ / tan β <br>With Partial Seepage: FS = (1 - Ywh / YsatH) tan φ / tan β <br>With Full Seepage: FS = Yeff tan φ / Ysattan β | h = height of water seepage from bottom sand stratum |

Use Quizgecko on...
Browser
Browser