Summary

This document contains trigonometric exercises and problems, including product-to-sum formulas, sum and difference identities, and trigonometric equations. The exercises cover various topics related to trigonometry, and likely assess the student's understanding of the concepts.

Full Transcript

Exercise 8.3 to change the following to sum or difference. OSe the product-to-sum formula (ii) 2cos 5tsin 3...

Exercise 8.3 to change the following to sum or difference. OSe the product-to-sum formula (ii) 2cos 5tsin 3tx () 4sin 16xcos10x (i) 10cos10y cos6y -2sin(-100°) (iv) 6cos5xsin 10x (v) sin(-)sin5u (vi) )sn(-20') (ix) 2sin 75° sin 15° (vii) cos23° sin 17° (vii) 2cos56°sin 48° 2u-2v (x) 4sin -cos 2cosu 2 2v +2y t -Sin 2 (xi) 2 2. Rewrite the sum or difference as a product oftwo functions. () sin 70° +sin 30° (i1) sin 76° - sin 14° (iii) cos58° +cos12° (iv) cos P9+ 2 cos PT9 2 (v) sin(-10°) +sin(-20°) 3. Prove the following identities. cos(a +B) 1-tan a tan B 6cos&usin2u -3sinlOu () (ii) +3 cos(a- B) 1+ tana tan ß sin(-6u) Sin6u (ii) 4cos4v sin 3v=2/sin 7v-sin v) (iv) sin 30 +sin =4cos sin (v) cos3x+ cosx =2cosxcos2x) (vi) 2tany cos3y =secy(sin4y -sin2y) (vi) sin 6ß+sin4ß co30 +coie =tan 5ß cotß (viil) -cos20 cot8 sin 6ß-sin 48 cot30 -cot® 224 Unit-08 Fundamentals otTrigonometry National Book Foundaia cos6r+ cos8x cos2a- cos4a (ix) sin 6x-sin 4x =cotxcos 7xsec5x (x) sin 2a +sin 4a = atan ix) 2cos2u cosu+sin2usinu =2cos'u (xii) 2sin2ysin 3y =cosy-cos5y cos10x +cos6x =cot2xcot8x (xiii) cos6x- cos10x Prove that. cos 20° = sin 70°sin 50° sin 30°sin 10° cos80°cos60° cos 40 (i) 16 16 n. 2n.3 47 3 (111) Sinsinsin 9 9 9 sin 9 16 TbaIO LAgrnt

Use Quizgecko on...
Browser
Browser