Calculus 1 - Derivatives Formula Sheet PDF

Summary

This document provides a comprehensive formula sheet for calculus 1, including various derivative rules for different functions such as trigonometric, exponential, logarithmic, and inverse trigonometric functions. It includes the chain rule, product rule, quotient rule, and other essential concepts. It is helpful for students and professionals in mathematics.

Full Transcript

Calculus 1 – Derivatives Formula Sheet: Basic Derivatives: 𝑑 𝑑 𝑑 [𝒄] = 0 [𝒙] = 1 [𝒄𝒙] = 𝑐 𝑑π‘₯ 𝑑π‘₯ 𝑑π‘₯...

Calculus 1 – Derivatives Formula Sheet: Basic Derivatives: 𝑑 𝑑 𝑑 [𝒄] = 0 [𝒙] = 1 [𝒄𝒙] = 𝑐 𝑑π‘₯ 𝑑π‘₯ 𝑑π‘₯ 𝑑 [𝒄 βˆ— 𝒇(𝒙)] = 𝑐 βˆ— 𝑓′(π‘₯) 𝑑π‘₯ Trigonometric Derivatives: 𝑑 𝑑 [𝐬𝐒𝐧 𝒙] = cos π‘₯ [𝐜𝐨𝐬 𝒙] = βˆ’ sin π‘₯ 𝑑π‘₯ 𝑑π‘₯ 𝑑 𝑑 [𝐭𝐚𝐧 𝒙] = 𝑠𝑒𝑐 2 π‘₯ [𝐜𝐨𝐭 𝒙] = βˆ’π‘π‘ π‘ 2 π‘₯ 𝑑π‘₯ 𝑑π‘₯ 𝑑 𝑑 [𝐬𝐞𝐜 𝒙] = sec π‘₯ tan π‘₯ [𝐜𝐬𝐜 𝒙] = βˆ’ csc π‘₯ cot π‘₯ 𝑑π‘₯ 𝑑π‘₯ The Power Rule: 𝑑 𝒏 [𝒙 ] = 𝑛π‘₯ π‘›βˆ’1 𝑑π‘₯ The Product Rule: 𝑑 [𝒖𝒗] = 𝑒′ 𝑣 + 𝑒𝑣′ 𝑑π‘₯ 𝑑 [π’–π’—π’˜] = 𝑒′ 𝑣𝑀 + 𝑒𝑣 β€² 𝑀 + 𝑒𝑣𝑀′ 𝑑π‘₯ The Quotient Rule: 𝑑 𝒖 𝑣𝑒′ βˆ’ 𝑒𝑣′ [ ]= 𝑑π‘₯ 𝒗 𝑣2 The Reciprocal Rule: 𝑑 𝟏 βˆ’π‘’β€² [ ]= 2 𝑑π‘₯ 𝒖 𝑒 www.Video-Tutor.net The Chain Rule: π’…π’š 𝑑𝑦 𝑑𝑒 = βˆ— 𝒅𝒙 𝑑𝑒 𝑑π‘₯ 𝑑 [𝒇(π’ˆ(𝒙))] = 𝑓 β€² (𝑔(π‘₯)) βˆ— 𝑔′(π‘₯) 𝑑π‘₯ 𝑑 [𝒇(π’ˆ(𝒖))] = 𝑓 β€² (𝑔(𝑒)) βˆ— 𝑔′ (𝑒) βˆ— 𝑒′ 𝑑π‘₯ 𝑑 [𝒇(𝒙)]𝒏 = 𝑛[𝑓(π‘₯)]π‘›βˆ’1 βˆ— 𝑓′(π‘₯) 𝑑π‘₯ Trig Derivatives: 𝑑 𝑑 𝐬𝐒𝐧(𝒖) = cos(𝑒) 𝑒′ 𝐜𝐨𝐬(𝒖) = βˆ’ sin(𝑒) 𝑒′ β€œWith Chain Rule” 𝑑π‘₯ 𝑑π‘₯ 𝑑 𝑑 𝐭𝐚𝐧(𝒖) = 𝑠𝑒𝑐 2 (𝑒) 𝑒′ 𝐜𝐨𝐭(𝒖) = βˆ’π‘π‘ π‘ 2 (𝑒) 𝑒′ 𝑑π‘₯ 𝑑π‘₯ 𝑑 𝑑 𝐬𝐞𝐜(𝒖) = sec(𝑒) tan(𝑒) 𝑒′ 𝐜𝐬𝐜(𝒖) = βˆ’ csc(𝑒) cot(𝑒) 𝑒′ 𝑑π‘₯ 𝑑π‘₯ Inverse Trig Derivatives: 𝑑 𝑒′ 𝑑 βˆ’π‘’β€² [π’”π’Šπ’βˆ’πŸ (𝒖)] = [π’„π’π’”βˆ’πŸ (𝒖)] = β€œWith Chain Rule” 𝑑π‘₯ √1 βˆ’ 𝑒2 𝑑π‘₯ √1 βˆ’ 𝑒2 𝑑 𝑒′ 𝑑 βˆ’π‘’β€² [π’•π’‚π’βˆ’πŸ (𝒖)] = [π’„π’π’•βˆ’πŸ (𝒖)] = 𝑑π‘₯ 1 + 𝑒2 𝑑π‘₯ 1 + 𝑒2 𝑑 𝑒′ 𝑑 βˆ’π‘’β€² [π’”π’†π’„βˆ’πŸ (𝒖)] = [π’„π’”π’„βˆ’πŸ (𝒖)] = 𝑑π‘₯ |𝑒|βˆšπ‘’2 βˆ’ 1 𝑑π‘₯ |𝑒|βˆšπ‘’2 βˆ’ 1 Exponential Derivatives: 𝑑 𝒖 [𝒆 ] = 𝑒 𝑒 βˆ— 𝑒′ 𝑑π‘₯ 𝑑 𝒖 [𝒂 ] = π‘Žπ‘’ βˆ— 𝑒′ βˆ— ln π‘Ž 𝑑π‘₯ Derivatives of Logs: 𝑑 𝑒′ [π₯𝐧 𝒖] = 𝑑π‘₯ 𝑒 𝑑 𝑒′ [π’π’π’ˆπ’‚ (𝒖)] = 𝑑π‘₯ 𝑒 ln π‘Ž www.Video-Tutor.net Logarithmic Differentiation: 𝑑 𝒗 𝑣𝑒′ [𝒖 ] = 𝑒𝑣 [ + 𝑣 β€² ln (𝑒)] 𝑑π‘₯ 𝑒 Inverse Functions: 𝑑 βˆ’πŸ 1 [𝒇 (𝒂)] = 𝒇(𝒃) = 𝒂 π’‡βˆ’πŸ (𝒂) = 𝒃 𝑑π‘₯ 𝑓′(𝑏) 𝑑 βˆ’πŸ 1 [𝒇 (𝒙)] = β€² βˆ’1 𝑑π‘₯ 𝑓 [𝑓 (π‘₯)] Limit Definition: 𝑓(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯) 𝒇′ (𝒙) = lim β„Žβ†’0 β„Ž Alternative Definition: 𝑓(π‘₯) βˆ’ 𝑓(π‘Ž) 𝒇′ (𝒂) = lim π‘₯β†’π‘Ž π‘₯βˆ’π‘Ž www.Video-Tutor.net

Use Quizgecko on...
Browser
Browser