Summary

This document provides a simplified guide to fingerprint analysis, covering basic principles, types of fingerprints (loops, whorls, arches), and the use of minutiae in comparisons. It also touches upon the practical aspects of finding and collecting fingerprints from various surfaces.

Full Transcript

A Simplified Guide To Fingerprint Analysis Introduction We  touch  things  every  day:  a  coffee  cup,  a  car  door,  a  computer  keyboard.   Each  time  we  do,  it  is  likely  that  we  leave  behind  our  unique  signature—in   our  f...

A Simplified Guide To Fingerprint Analysis Introduction We  touch  things  every  day:  a  coffee  cup,  a  car  door,  a  computer  keyboard.   Each  time  we  do,  it  is  likely  that  we  leave  behind  our  unique  signature—in   our  fingerprints.     No  two  people  have  exactly  the  same  fingerprints.  Even  identical  twins,  with   identical  DNA,  have  different  fingerprints.  This  uniqueness  allows   fingerprints  to  be  used  in  all  sorts  of  ways,  including  for  background  checks,   biometric  security,  mass  disaster  identification,  and  of  course,  in  criminal   situations.     Fingerprint  analysis  has  been  used  to  identify  suspects  and  solve  crimes  for   more  than  100  years,  and  it  remains  an  extremely  valuable  tool  for  law   enforcement.  One  of  the  most  important  uses  for  fingerprints  is  to  help   investigators  link  one  crime  scene  to  another  involving  the  same  person.   Fingerprint  identification  also  helps  investigators  to  track  a  criminal’s   record,  their  previous  arrests  and  convictions,  to  aid  in  sentencing,   probation,  parole  and  pardoning  decisions.   Principles of Fingerprint Analysis Fingerprints  are  unique  patterns,  made  by  friction  ridges  (raised)  and   furrows  (recessed),  which  appear  on  the  pads  of  the  fingers  and  thumbs.   Prints  from  palms,  toes  and  feet  are  also  unique;  however,  these  are  used   less  often  for  identification,  so  this  guide  focuses  on  prints  from  the  fingers   and  thumbs.   The  fingerprint  pattern,  such  as  the  print  left  when  an  inked  finger  is   pressed  onto  paper,  is  that  of  the  friction  ridges  on  that  particular  finger.   Friction  ridge  patterns  are  grouped  into  three  distinct  types—loops,  whorls,   and  arches—each  with  unique  variations,  depending  on  the  shape  and   relationship  of  the  ridges:                 Loop,  whorl  &  arch  pattern  examples.   Loops  -­‐  prints  that  recurve  back  on  themselves  to  form  a  loop  shape.   Divided  into  radial  loops  (pointing  toward  the  radius  bone,  or  thumb)  and   ulnar  loops  (pointing  toward  the  ulna  bone,  or  pinky),  loops  account  for   approximately  60  percent  of  pattern  types.   Whorls  -­‐  form  circular  or  spiral  patterns,  like  tiny  whirlpools.  There  are  four   groups  of  whorls:  plain  (concentric  circles),  central  pocket  loop  (a  loop  with   a  whorl  at  the  end),  double  loop  (two  loops  that  create  an  S-­‐like  pattern)  and   accidental  loop  (irregular  shaped).  Whorls  make  up  about  35  percent  of   pattern  types.   Arches  -­‐  create  a  wave-­‐like  pattern  and  include  plain  arches  and  tented   arches.  Tented  arches  rise  to  a  sharper  point  than  plain  arches.  Arches  make   up  about  five  percent  of  all  pattern  types.   To  Each  His  Own   The  two  underlying  premises  of  fingerprint  identification  are  uniqueness   and  persistence  (permanence).  To  date,  no  two  people  have  ever  been  found   to  have  the  same  fingerprints—including  identical  twins.  In  addition,  no   single  person  has  ever  been  found  to  have  the  same  fingerprint  on  multiple   fingers.   Persistence,  also  referred  to  as  permanence,  is  the  principle  that  a  person’s   fingerprints  remain  essentially  unchanged  throughout  their  lifetime.  As  new   skin  cells  form,  they  remain  cemented  in  the  existing  friction  ridge  and   furrow  pattern.  In  fact,  many  people  have  conducted  research  that  confirms   this  persistency  by  recording  the  same  fingerprints  over  decades  and   observing  that  the  features  remain  the  same.  Even  attempts  to  remove  or   damage  one’s  fingerprints  will  be  thwarted  when  the  new  skin  grows,  unless   the  damage  is  extremely  deep,  in  which  case,  the  new  arrangement  caused   by  the  damage  will  now  persist  and  is  also  unique.   The  Proof  is  in  the  Minutiae   Analysts  use  the  general  pattern  type  (loop,  whorl  or  arch)  to  make  initial   comparisons  and  include  or  exclude  a  known  fingerprint  from  further   analysis.  To  match  a  print,  the  analyst  uses  the  minutiae,  or  ridge   characteristics,  to  identify  specific  points  on  a  suspect  fingerprint  with  the   same  information  in  a  known  fingerprint.  For  example,  an  analyst  comparing   a  crime  scene  print  to  a  print  on  file  would  first  gather  known  prints  with   the  same  general  pattern  type,  then  using  a  loupe,  compare  the  prints  side-­‐ by-­‐side  to  identify  specific  information  within  the  minutiae  that  match.  If   enough  details  correlate,  the  fingerprints  are  determined  to  be  from  the   same  person.   When and how is fingerprint analysis used? Fingerprints  can  be  used  in  all  sorts  of  ways:   Providing  biometric  security  (for  example,  to  control  access  to  secure  areas   or  systems)   Identifying  amnesia  victims  and  unknown  deceased  (such  as  victims  of   major  disasters,  if  their  fingerprints  are  on  file)   Conducting  background  checks  (including  applications  for  government   employment,  defense  security  clearance,  concealed  weapon  permits,  etc.).     Fingerprints  are  especially  important  in  the  criminal  justice  realm.   Investigators  and  analysts  can  compare  unknown  prints  collected  from  a   crime  scene  to  the  known  prints  of  victims,  witnesses  and  potential  suspects   to  assist  in  criminal  cases.  For  example:   A  killer  may  leave  their  fingerprints  on  the  suspected  murder  weapon   A  bank  robber’s  fingerprints  may  be  found  on  a  robbery  note   In  an  assault  case,  the  perpetrator  may  have  left  fingerprints  on  the  victim’s   skin   A  burglar  may  leave  fingerprints  on  a  broken  window  pane   A  thief’s  fingerprints  may  be  found  on  a  safe   In  addition,  fingerprints  can  link  a  perpetrator  to  other  unsolved  crimes  if   investigators  have  reason  to  compare  them,  or  if  prints  from  an  unsolved   crime  turn  up  as  a  match  during  a  database  search.  Sometimes  these   unknown  prints  linking  multiple  crimes  can  help  investigators  piece   together  enough  information  to  zero  in  on  the  culprit.     In  the  absence  of  DNA,  fingerprints  are  used  by  the  criminal  justice  system   to  verify  a  convicted  offender’s  identity  and  track  their  previous  arrests  and   convictions,  criminal  tendencies,  known  associates  and  other  useful   information.  Officers  of  the  court  can  also  use  these  records  to  help  make   decisions  regarding  a  criminal’s  sentence,  probation,  parole  or  pardon.   How It’s Done Where  Fingerprints  May  be  Found   Fingerprints  can  be  found  on  practically  any  solid  surface,  including  the   human  body.  Analysts  classify  fingerprints  into  three  categories  according  to   the  type  of  surface  on  which  they  are  found  and  whether  they  are  visible  or   not:  Fingerprints  on  soft  surfaces  (such  as  soap,  wax,  wet  paint,  fresh  caulk,   etc.)  are  likely  to  be  three-­‐dimensional  plastic  prints;  those  on  hard  surfaces   are  either  patent  (visible)  or  latent  (invisible)  prints.  Visible  prints  are   formed  when  blood,  dirt,  ink,  paint,  etc.,  is  transferred  from  a  finger  or   thumb  to  a  surface.  Patent  prints  can  be  found  on  a  wide  variety  of  surfaces:   smooth  or  rough,  porous  (such  as  paper,  cloth  or  wood)  or  nonporous  (such   as  metal,  glass  or  plastic).   Latent  prints  are  formed  when  the  body’s  natural  oils  and  sweat  on  the  skin   are  deposited  onto  another  surface.  Latent  prints  can  be  found  on  a  variety   of  surfaces;  however,  they  are  not  readily  visible  and  detection  often   requires  the  use  of  fingerprint  powders,  chemical  reagents  or  alternate  light   sources.  Generally  speaking,  the  smoother  and  less  porous  a  surface  is,  the   greater  the  potential  that  any  latent  prints  present  can  be  found  and   developed.   How  Fingerprints  are  Collected   Collecting  Patent  Prints   Patent  prints  are  collected  using  a  fairly  straightforward  method:   photography.  These  prints  are  photographed  in  high  resolution  with  a   forensic  measurement  scale  in  the  image  for  reference.  Investigators  can   improve  the  quality  of  the  images  by  using  low-­‐angle  or  alternate  light   sources  and/or  certain  chemicals  or  dyes  during  photography,  but  this  is   usually  not  necessary.   Collecting  Latent  Prints   One  of  the  most  common  methods  for  discovering  and  collecting  latent   fingerprints  is  by  dusting  a  smooth  or  nonporous  surface  with  fingerprint   powder  (black  granular,  aluminum  flake,  black  magnetic,  etc.).  If  any  prints   appear,  they  are  photographed  as  mentioned  above  and  then  lifted  from  the   surface  with  clear  adhesive  tape.  The  lifting  tape  is  then  placed  on  a  latent   lift  card  to  preserve  the  print.   However,  fingerprint  powders  can  contaminate  the  evidence  and  ruin  the   opportunity  to  perform  other  techniques  that  could  turn  up  a  hidden  print   or  additional  information.  Therefore,  investigators  may  examine  the  area   with  an  alternate  light  source  or  apply  cyanoacrylate  (super  glue)  before   using  powders.   Alternate  Light  Source  (ALS):  It  is  becoming  more  commonplace  for   investigators  to  examine  any  likely  surfaces  (doors,  doorknobs,  windows,   railings,  etc.)  with  an  alternate  light  source.  These  are  laser  or  LED  devices   that  emit  a  particular  wavelength,  or  spectrum,  of  light.  Some  devices  have   different  filters  to  provide  a  variety  of  spectra  that  can  be  photographed  or   further  processed  with  powders  or  dye  stains.  For  example,  investigators   may  use  a  blue  light  with  an  orange  filter  to  find  latent  prints  on  desks,   chairs,  computer  equipment  or  other  objects  at  the  scene  of  a  break-­‐in.     Using  a  fluorescent  dye  stain  and  an  orange  alternate  light  source  helps  this   latent  print  appear  clearly  so  that  it  can  be  documented.  (Courtesy  of  Scott   Campbell,  Ron  Smith  &  Associates)   Cyanoacrylate:  Investigators  often  perform  cyanoacrylate  (superglue)   processing,  or  fuming,  of  a  surface  before  applying  powders  or  dye  stains.   This  process,  typically  performed  on  non-­‐porous  surfaces,  involves  exposing   the  object  to  cyanoacrylate  vapors.  The  vapors  (fumes)  will  adhere  to  any   prints  present  on  the  object  allowing  them  to  be  viewed  with  oblique   ambient  light  or  a  white  light  source.     A  chamber  specially  designed  for  exposing  latent  prints  to  super  glue  fumes.   (Courtesy  of  Scott  Campbell,  Ron  Smith  &  Associates)     Super  glue  fumes  adhere  to  latent  fingerprints  on  the  neck  of  a  glass  bottle.   (Courtesy  of  Scott  Campbell,  Ron  Smith  &  Associates)   Chemical  Developers:  Porous  surfaces  such  as  paper  are  typically   processed  with  chemicals,  including  ninhydrin  and  physical  developer,  to   reveal  latent  fingerprints.  These  chemicals  react  with  specific  components  of   latent  print  residue,  such  as  amino  acids  and  inorganic  salts.  Ninhydrin   causes  prints  to  turn  a  purple  color,  which  makes  them  easily  photographed.   DFO  (1,2-­‐diazafluoren-­‐9-­‐one)  is  another  chemical  used  to  locate  latent   fingerprints  on  porous  surfaces;  it  causes  fingerprints  to  fluoresce,  or  glow,   when  they  are  illuminated  by  blue-­‐green  light.     Paper  treated  with  ninhydrin  reagent  reveals  latent  prints  after  being   processed  with  a  household  steam  iron.  (Courtesy  of  NFSTC)   Other  Collection  Methods:  In  addition  to  the  methods  identified  above,   there  are  special  techniques  for  capturing  prints  from  skin,  clothing  and   other  difficult  surfaces.  Amido  Black,  a  non-­‐specific  protein  stain  that  reacts   with  any  protein  present,  is  typically  used  for  developing  or  enhancing   bloody  impressions  on  human  skin.  To  reveal  prints  on  clothing,  high-­‐tech   methods  such  as  vacuum  metal  deposition  using  gold  and  zinc  are  showing   promise  for  the  investigator.  AccuTrans®,  a  liquid  casting  compound,  can  be   used  to  lift  powdered  latent  prints  from  rough,  textured  or  curved  surfaces.   AccuTrans®  is  basically  a  very  thick  liquid  that  fills  in  the  nooks  and  crannies   of  rough  or  textured  areas  where  conventional  print  lifting  tape  encounters   difficulty.   Like  fingerprint  powders,  chemical  processing  can  reduce  the  investigator’s   ability  to  perform  other  techniques  that  could  reveal  valuable  information.   Therefore,  any  nondestructive  investigations  are  performed  before  the   evidence  is  treated  with  chemicals.  For  example,  a  ransom  or  hold-­‐up  note   will  be  examined  by  a  questioned  documents  expert  before  being  treated   with  ninhydrin,  since  some  formulations  of  ninhydrin  will  cause  certain  inks   to  run,  thus  destroying  the  writing.   Who  Conducts  the  Analysis   In  criminal  justice  cases,  computerized  systems  are  used  to  search  various   local,  state  and  national  fingerprint  databases  for  potential  matches.  Many  of   these  systems  provide  a  value  indicating  how  close  the  match  is,  based  on   the  algorithm  used  to  perform  the  search.  Fingerprint  examiners  then   review  the  potential  matches  and  make  a  final  determination.   Fingerprint  examinations  may  be  conducted  by  forensic  scientists,   technicians  or  police  officers;  however,  the  examiner  should  have  the  proper   training  and  experience  to  perform  the  task.  Currently  many  agencies   require  new  examiners  to  have  a  four-­‐year  degree  in  science  (biology,   chemistry  or  physics).  In  addition,  agencies  may  require  examiners  to   become  certified  by  the  International  Association  for  Identification  (IAI).   IAI’s  website  (http://www.theiai.org/)  provides  certification  requirements.   How  and  Where  the  Analysis  is  Performed   Fingerprint  analysis  is  usually  performed  by  law  enforcement  agencies  or   crime  laboratories;  however,  casework  may  be  sent  to  private  companies  if   there  is  a  need,  such  as  to  reduce  backlogs,  verify  results,  or  handle  high-­‐ profile  cases.   Fingerprint  examination  involves  looking  at  the  quality  and  quantity  of   information  in  order  to  find  agreement  or  disagreement  between  the   unknown  print  (from  the  crime  scene)  and  known  prints  on  file.  To  conduct   the  examination,  fingerprint  examiners  use  a  small  magnifier  called  a  loupe   to  view  minute  details  (minutiae)  of  a  print.  A  pointer  called  a  ridge  counter   is  used  to  count  the  friction  ridges.     An  examiner  uses  a  loupe  to  view  minute  details  of  a  fingerprint.  (Courtesy  of   NFSTC)   The  Fingerprint  Analysis  Process   Fingerprint  examiners  use  the  ACE-­‐V  (analysis,  comparison,  evaluation  and   verification)  method  to  reach  a  determination  on  each  print.   Analysis  involves  assessing  a  print  to  determine  if  it  can  be  used  for  a   comparison.  If  the  print  is  not  suitable  for  comparison  because  of  inadequate   quality  or  quantity  of  features,  the  examination  ends  and  the  print  is   reported  as  not  suitable.  If  the  print  is  suitable,  the  analysis  indicates  the   features  to  be  used  in  the  comparison  and  their  tolerances  (the  amount  of   variation  that  will  be  accepted).  The  analysis  may  also  uncover  physical   features  such  as  recurves,  deltas,  creases  and  scars  that  help  indicate  where   to  begin  the  comparison.   Comparisons  are  performed  by  an  analyst  who  views  the  known  and   suspect  prints  side-­‐by-­‐side.  The  analyst  compares  minutiae  characteristics   and  locations  to  determine  if  they  match.  Known  prints  are  often  collected   from  persons  of  interest,  victims,  others  present  at  the  scene  or  through  a   search  of  one  or  more  fingerprint  databases  such  as  the  FBI’s  Integrated   Automated  Fingerprint  Identification  System  (IAFIS).  IAFIS  is  the  largest   fingerprint  database  in  the  world  and,  as  of  June  2012,  held  more  than  72   million  print  records  from  criminals,  military  personnel,  government   employees  and  other  civilian  employees.   Evaluation  is  where  the  examiner  ultimately  decides  if  the  prints  are  from   the  same  source  (identification  or  individualization),  different  sources   (exclusion)  or  is  inconclusive.  Inconclusive  results  may  be  due  to  poor   quality  samples,  lack  of  comparable  areas,  or  insufficient  number  of   corresponding  or  dissimilar  features  to  be  certain.   Verification  is  when  another  examiner  independently  analyzes,  compares   and  evaluates  the  prints  to  either  support  or  refute  the  conclusions  of  the   original  examiner.  The  examiner  may  also  verify  the  suitability  of   determinations  made  in  the  analysis  phase.   FAQs What  kind  of  results  can  be  expected  from  fingerprint   analysis?   Each  fingerprint  examination  will  result  in  one  of  the  following  conclusions:   1. The  fingerprint  was  made  by  (identified/individualized  to)  a  known  source   (victim,  suspect,  etc.)   2. The  fingerprint  was  not  made  by  (excluded  to)  a  known  source.   3. The  fingerprint  cannot  be  identified  or  excluded  to  a  known  source   (inconclusive).   4. The  fingerprint  is  of  no  value  to  compare  (not  suitable  for  comparison)  to  a   known  source.   What  are  the  limitations  of  fingerprint  analysis?   Perhaps  the  primary  limitation  of  fingerprint  analysis  is  that  there  must  be  a   known  print  that  can  be  compared  to  the  collected  print.  Unless  there  is  a   known  suspect  or  the  perpetrator’s  prints  are  found  on  file  in  one  of  the   many  databases  around  the  world,  the  collected  prints  will  likely  only  be   used  to  exclude  individuals  from  the  investigation.   Another  limitation  is  that  there  is  no  scientific  way  to  determine  the  time  a   latent  print  was  deposited  on  a  surface.  An  examiner  cannot  tell  how  long  a   print  has  been  on  a  surface  or  under  what  circumstances  it  was  placed  there.   For  example,  if  a  suspect’s  print  is  found  in  the  kitchen  of  a  murdered   acquaintance,  the  print  may  or  may  not  be  tied  to  the  murder,  especially  if   the  suspect  claims  to  have  visited  the  victim’s  house  fairly  recently.   It  is  not  possible  to  determine  sex,  age  or  race  from  a  latent  print;  if   sufficient  DNA  is  left  behind,  then  the  party’s  sex  can  be  determined.     How  is  quality  control  and  quality  assurance   performed?   To  ensure  the  most  accurate  analysis  of  evidence,  the  management  of   forensic  laboratories  puts  in  place  policies  and  procedures  that  govern   facilities  and  equipment,  methods  and  procedures,  and  analyst  qualifications   and  training.  Depending  on  the  state  in  which  it  operates,  a  crime  laboratory   may  be  required  to  achieve  accreditation  to  verify  that  it  meets  quality   standards.  There  are  two  internationally  recognized  accrediting  programs   focused  on  forensic  laboratories:  The  American  Society  of  Crime  Laboratory   Directors  Laboratory  Accreditation  Board  (http://www.ascld-­‐lab.org/)  and   ANSI-­‐ASQ  National  Accreditation  Board  /  FQS  (http://fqsforensics.org/).     In  disciplines  such  as  fingerprint  examination,  where  testing  requires   analysts  to  compare  specific  details  of  two  samples,  quality  control  is   achieved  through  technical  review  and  verification  of  conclusions.  This   involves  an  expert  or  peer  who  reviews  the  test  data,  methodology  and   results  to  validate  or  refute  the  outcome.  The  Scientific  Working  Group  on   Friction  Ridge  Analysis,  Study  and  Technology  (SWGFAST)   (http://www.swgfast.org/Documents.html)  publishes  quality  assurance   standards  for  use  by  forensic  practitioners.  These  standards  indicate  that  all   identifications  must  be  verified,  whereas  exclusions  and  inconclusive  results   should  be  verified.  This  involves  having  an  expert  or  peer  review  the  test   data,  methodology  and  results  to  validate  or  refute  the  outcome.   What  information  does  the  report  include  and  how  are   the  results  interpreted?   Reports  typically  will  state  what  evidence  was  received,  what  types  of   examinations  were  conducted  and  the  results  of  those  examinations.  Results   should  be  worded  clearly  so  that  the  end  user  has  no  difficulty  in   understanding  the  results  (see  “What  kind  of  results  should  I  expect?”   above).   Once  the  examiner  has  completed  their  analysis  and  reached  a  conclusion,   there  is  no  interpretation  required.  Results  clearly  fall  into  one  of  the  four   categories.   Are  there  any  misconceptions  or  anything  else  about   fingerprint  examination  that  would  be  important  to  the   non-­‐scientist?   Just  because  someone  touches  a  surface  does  not  guarantee  that  a  latent   print  will  be  deposited.  Here  are  some  reasons  a  print  may  not  be  deposited:   The  person  may  be  wearing  gloves.   The  person’s  hands  may  be  very  dry,  which  means  there  is  little  or  no  sweat   or  oils  coating  the  ridges.  Therefore,  the  ridge  detail  won’t  reliably  transfer   to  the  surface.   Rougher  surfaces  are  less  conducive  to  receiving  latent  impressions  than   smooth  surfaces.   Even  if  a  print  is  deposited,  it  may  not  become  a  useful  piece  of  evidence.   Here  are  some  reasons  why:   It  may  not  be  discovered.   It  may  not  survive,  due  to  environmental  factors.  For  example,  prints   deposited  outdoors  in  arid  climates  may  not  survive  long  because  latent   print  residue  is  approximately  98%  water.   If  a  particular  surface  or  item  is  collected/packaged  improperly,  any  latent   prints  may  be  destroyed.   The  print  may  be  found  but  not  contain  a  sufficient  amount  of  information  to   be  useful.  For  example,  it  could  be  a  partial  print,  a  smeared  print,  or  from  a   part  of  the  hand  for  which  a  known  print  is  not  available.   Common Terms The  Scientific  Working  Group  on  Friction  Ridge  Analysis,  Study  and   Technology  (SWGFAST)  maintains  a  list  of  terms  generally  used  and   accepted  within  the  fingerprint  analysis  community.  Additional  terms  can  be   found  on  the  SWGFAST  website   (http://www.swgfast.org/documents/glossary/090508_Glossary_2.0.pdf).   Arch,  plain  -­‐  A  type  of  print  pattern  in  which  the  friction  ridges  enter  on  one   side  of  the  print  and  flow  out  the  other  side  with  a  rise  or  wave  in  the  center.   Arch,  tented  -­‐  A  type  of  print  pattern  similar  to  the  plain  arch  but  that   possesses  an  angle,  upthrust  (central  rise),  or  two  of  the  three  basic   characteristics  of  the  loop.   Cyanoacrylate  -­‐  The  primary  (>98%)  component  of  super  glue;  it  is  used  in   a  fuming  technique  to  develop  latent  (invisible)  prints  on  a  variety  of   surfaces  so  they  can  be  photographed.   Core  -­‐  A  structure  in  the  print  that  is  the  center  line  or  lines  of  the  print;  it  is   important  for  conducting  ridge  counts,   Delta  -­‐  A  point  in  loop  and  whorl  prints  that  lies  within  an  often  triangular,   three-­‐pronged  or  funnel-­‐shaped  structure;  it  is  the  part  of  a  ridge  nearest   the  point  where  two  parallel  ridge  lines  (the  “type”  lines)  diverge  to  flow   around  the  loop  or  whorl;  loop  patterns  have  one  delta,  which  is  the  starting   point  for  conducting  a  ridge  count,  and  whorls  have  two  or  more,  which  are   important  for  determining  the  whorl  type.   Friction  ridge  -­‐  The  raised  portion  of  the  skin  of  the  print,  consisting  of  one   or  more  connected  ridges.   Furrow  -­‐  A  valley  or  depression  between  friction  ridges.   Loop  -­‐  A  type  of  print  pattern  in  which  one  or  more  friction  ridges  enter  on   one  side  of  the  print,  curve  up  and  around  and  back  down,  then  flow  out  on   the  same  side  of  the  print  from  which  it  entered;  types  can  be  divided  into   left  slant  loops  and  right  slant  loops  or,  if  the  source  of  the  print  is  known  to   be  a  specific  hand  (the  left  or  right),  into  radial  loops  (the  pattern  flows  in   the  direction  of  the  radius  bone  of  the  forearm,  toward  the  thumb)  and  ulnar   loops  (the  pattern  flows  in  the  direction  of  the  ulna  bone  of  the  forearm,   toward  the  little  finger).   Loupe  -­‐  A  small,  often  frame-­‐mounted  magnifier  used  for  examining   fingerprint  detail.   Print  -­‐  The  mark  made  by  a  finger  or  thumb  on  a  surface  or  in  a  soft  material   such  as  wax  or  wet  paint;  can  be  patent  (surface-­‐visible),  latent  (surface-­‐ invisible),  or  plastic  (3-­‐dimensional  in  soft  material).   Ridge  counter  -­‐  A  handheld,  pointed  tool  used  for  counting  the  number  of   ridges  during  fingerprint  analysis.   Shoulder  -­‐  The  point  of  a  loop’s  recurving  ridge  where  it  curves  back   around.   Whorl,  accidental  -­‐  A  type  of  print  pattern  consisting  of  the  combination  of   two  different  types  of  patterns  (excluding  the  plain  arch)  with  two  or  more   deltas;  or  a  print  pattern  type  that  possesses  some  of  the  requirements  for   two  or  more  different  types  of  patterns;  or  a  print  pattern  type  that   conforms  to  none  of  the  definitions  of  a  pattern.   Whorl,  central  pocket  loop  -­‐  A  type  of  print  pattern  that  has  two  deltas  and   at  least  one  friction  ridge  that  makes  one  complete  circuit,  which  may  be   spiral,  oval,  circular,  or  any  variant  of  a  circle;  an  imaginary  line  drawn   between  the  two  deltas  does  not  touch  or  cross  the  “central  pocket”  (the   recurving  ridges  within  the  inner  pattern  area).   Whorl,  double  loop  -­‐  A  type  of  print  pattern  that  consists  of  two  separate   loop  formations  with  two  separate  and  distinct  sets  of  shoulders  and  two   deltas.   Whorl,  plain  -­‐  A  type  of  print  pattern  that  consists  of  one  or  more  friction   ridges  making  a  complete  circuit  and  two  deltas;  an  imaginary  line  drawn   between  the  two  deltas  touches  or  crosses  at  least  one  recurving  ridge   within  the  inner  pattern  area.   Resources & References Learn  more  about  this  topic  at  the  websites  and  publications  listed  below.   Resources   International  Association  for  Identification  (IAI)  Latent  Print  Certification   (http://www.theiai.org/certifications/latent_print/index.php)     International  Association  for  Identification  Latent  Prints/Fingerprint   Identification/AFIS  FAQs   (http://www.theiai.org/disciplines/latent_prints/faq.php)     International  Association  for  Identification  Tenprint  Fingerprint   Certification  (http://www.theiai.org/certifications/tenprint/index.php)     International  Association  for  Identification  Tenprint  Fingerprint  FAQs   (http://www.theiai.org/disciplines/tenprint/index.php)     Scientific  Working  Group  on  Friction  Ridge  Analysis,  Study  and  Technology   (SWGFAST)  (http://www.swgfast.org/)     SWGFAST  Documents  (http://www.swgfast.org/Documents.html)     Fingerprint  Patterns  (http://e-­‐ ditionsbyfry.com/Olive/ODE/FNS/Default.aspx?href=FNS/2012/06/01&pageno=01&v iew=document),  F ORENSIC   M AGAZINE ,  June  2012   T HE  F INGERPRINT  S OURCEBOOK  (http://www.nij.gov/pubs-­‐sum/225320.htm),   SWGFAST,  August  2011   References   Cherry,  M.,  and  Imwinkelried,  E.  “A  Cautionary  Note  About  Fingerprint   Analysis  and  Reliance  on  Digital  Technology   (https://www.ncjrs.gov/app/publications/Abstract.aspx?id=236592)”,  JUDICATURE   Volume  89,  Number  6  May–June  2006.  (accessed  3/6/2012).   Expert  Working  Group  on  Human  Factors  in  Latent  Print  Analysis,  L ATENT   P RINT  E XAMINATION  A ND  H UMAN  F ACTORS:  IMPROVING  T HE  P RACTICE   THROUGH   A   S YSTEMS   A PPROACH ,  U.S.  Department  of  Commerce,  National   Institute  of  Standards  and  Technology,  2012.   Federal  Bureau  of  Investigation,  Investigation  Integrated  Automated   Fingerprint  Identification  System  website  (http://www.fbi.gov/about-­‐ us/cjis/fingerprints_biometrics/iafis/iafis)  (accessed  4/3/2012).   Federal  Bureau  of  Investigation  (J.  Edgar  Hoover),  T HE  S CIENCE  O F   F INGERPRINTS:  C LASSIFICATION  AND  U SES   (http://www.gutenberg.org/files/19022/19022-­‐h/19022-­‐h.htm),     F INGERPRINT  T RAINING  M ANUAL,  Federal  Bureau  of  Investigation  Criminal   Justice  Information  Services  Division,  Identification  Services  Section,   Revised  December  1993.   Laboratory  Physical  Evidence  Bulletin  #10:  “Latent  Prints   (http://www.nfstc.org/download/65),”,  Quality  Documents  Program.   Lyle,  D.P.,  M.D.  “Chapter  12:  Fingerprints:  A  Handy  Identification  Tool,”   F ORENSICS:  A  G UIDE  FOR  W RITERS  (Howdunit),  Writer’s  Digest  Books,   Cincinnati,  OH  (2008),  pp.  269–284.   Scientific  Working  Group  on  Friction  Ridge  Analysis,  Study  and  Technology   (SWGFAST),  Standard  for  Friction  Ridge  Digital  Imaging,  ver.  1.1,  September   14,  2009.   Scientific  Working  Group  on  Friction  Ridge  Analysis,  Study  and  Technology   (SWGFAST),  Standard  Terminology  of  Friction  Ridge  Examination,  ver.  3,   February  11,  2011.   Scientific  Working  Group  on  Friction  Ridge  Analysis,  Study  and  Technology   (SWGFAST),  Standards  for  Examining  Friction  Ridge  Impressions  and   Resulting  Conclusions,  ver.  1.0,  September  13,  2011.   Triplett,  M.  F INGERPRINT  D ICTIONARY   T HE  F INGERPRINT  S OURCEBOOK ,  Scientific  Working  Group  on  Friction  Ridge   Analysis,  Study  and  Technology  (SWGFAST),  et  al.  August  2011.   T HE  S CIENCE  O F  F INGERPRINTS,  U.S.  Department  of  Justice,  Federal  Bureau  of   Investigation,  1990.   Acknowledgments   The  authors  wish  to  thank  the  following  for  their  invaluable  contributions  to   this  forensic  guide:   John  P.  Black,  CLPE,  CFWE,  CSCSA,  Senior  Consultant,  Ron  Smith  and   Associates   Scott  Campbell,  CSCSA,  Senior  Consultant,  Ron  Smith  and  Associates     Forensic Evidence Admissibility and Expert Witnesses How  or  why  some  scientific  evidence  or  expert  witnesses  are  allowed  to  be   presented  in  court  and  some  are  not  can  be  confusing  to  the  casual  observer   or  a  layperson  reading  about  a  case  in  the  media.    However,  there  is   significant  precedent  that  guides  the  way  these  decisions  are  made.  Our   discussion  here  will  briefly  outline  the  three  major  sources  that  currently   guide  evidence  and  testimony  admissibility.     The  Frye  Standard  –  Scientific  Evidence  and  the   Principle  of  General  Acceptance   In  1923,  in  Frye  v.  United  States,  the  District  of  Columbia  Court  rejected  the   scientific  validity  of  the  lie  detector  (polygraph)  because  the  technology  did   not  have  significant  general  acceptance  at  that  time.    The  court  gave  a   guideline  for  determining  the  admissibility  of  scientific  examinations:     Just  when  a  scientific  principle  or  discovery  crosses  the  line  between  the   experimental  and  demonstrable  stages  is  difficult  to  define.  Somewhere  in  this   twilight  zone  the  evidential  force  of  the  principle  must  be  recognized,  and   while  the  courts  will  go  a  long  way  in  admitting  experimental  testimony   deduced  from  a  well-­‐recognized  scientific  principle  or  discovery,  the  thing   from  which  the  deduction  is  made  must  be  sufficiently  established  to  have   gained  general  acceptance  in  the  particular  field  in  which  it  belongs.   Essentially,  to  apply  the  “Frye  Standard”  a  court  had  to  decide  if  the   procedure,  technique  or  principles  in  question  were  generally  accepted  by  a   meaningful  proportion  of  the  relevant  scientific  community.    This  standard   prevailed  in  the  federal  courts  and  some  states  for  many  years.   Federal  Rules  of  Evidence,  Rule  702   In  1975,  more  than  a  half-­‐century  after  Frye  was  decided,  the  Federal  Rules   of  Evidence  were  adopted  for  litigation  in  federal  courts.  They  included  rules   on  expert  testimony.  Their  alternative  to  the  Frye  Standard  came  to  be  used   more  broadly  because  it  did  not  strictly  require  general  acceptance  and  was   seen  to  be  more  flexible.          293  Fed.  1013  (1923)   The  first  version  of  Federal  Rule  of  Evidence  702  provided  that  a  witness   who  is  qualified  as  an  expert  by  knowledge,  skill,  experience,  training,  or   education  may  testify  in  the  form  of  an  opinion  or  otherwise  if:   a. the  expert’s  scientific,  technical,  or  other  specialized  knowledge  will  help  the   trier  of  fact  to  understand  the  evidence  or  to  determine  a  fact  in  issue;   b. the  testimony  is  based  on  sufficient  facts  or  data;   c. the  testimony  is  the  product  of  reliable  principles  and  methods;  and   d. the  expert  has  reliably  applied  the  principles  and  methods  to  the  facts  of  the   case.     While  the  states  are  allowed  to  adopt  their  own  rules,  most  have  adopted  or   modified  the  Federal  rules,  including  those  covering  expert  testimony.       In  a  1993  case,  Daubert  v.  Merrell  Dow  Pharmaceuticals,  Inc.,  the  United   States  Supreme  Court  held  that  the  Federal  Rules  of  Evidence,  and  in   particular  Fed.  R.  Evid.  702,  superseded  Frye’s  "general  acceptance"  test.       The  Daubert  Standard  –  Court  Acceptance  of  Expert   Testimony   In  Daubert  and  later  cases,  the  Court  explained  that  the  federal  standard   includes  general  acceptance,  but  also  looks  at  the  science  and  its  application.   Trial  judges  are  the  final  arbiter  or  “gatekeeper”  on  admissibility  of  evidence   and  acceptance  of  a  witness  as  an  expert  within  their  own  courtrooms.   In  deciding  if  the  science  and  the  expert  in  question  should  be  permitted,  the   judge  should  consider:   What  is  the  basic  theory  and  has  it  been  tested?   Are  there  standards  controlling  the  technique?   Has  the  theory  or  technique  been  subjected  to  peer  review  and  publication?   What  is  the  known  or  potential  error  rate?   Is  there  general  acceptance  of  the  theory?   Has  the  expert  adequately  accounted  for  alternative  explanations?   Has  the  expert  unjustifiably  extrapolated  from  an  accepted  premise  to  an   unfounded  conclusion?     The  Daubert  Court  also  observed  that  concerns  over  shaky  evidence  could   be  handled  through  vigorous  cross-­‐examination,  presentation  of  contrary   evidence  and  careful  instruction  on  the  burden  of  proof.          The  “Daubert  Trilogy”  of  cases  is:  D AUBERT  V.  M ERRELL  D OW  P HARMACEUTICALS ,  G ENERAL   E LECTRIC  C O.  V.  J OINER  and  K UMHO  T IRE  C O.  V.  C ARMICHAEL.   In  many  states,  scientific  expert  testimony  is  now  subject  to  this  Daubert   standard.    But  some  states  still  use  a  modification  of  the  Frye  standard.   Who  can  serve  as  an  expert  forensic  science  witness  at   court?       Over  the  years,  evidence  presented  at  trial  has  grown  increasingly  difficult   for  the  average  juror  to  understand.    By  calling  on  an  expert  witness  who  can   discuss  complex  evidence  or  testing  in  an  easy-­‐to-­‐understand  manner,  trial   lawyers  can  better  present  their  cases  and  jurors  can  be  better  equipped  to   weigh  the  evidence.  But  this  brings  up  additional  difficult  questions.  How   does  the  court  define  whether  a  person  is  an  expert?  What  qualifications   must  they  meet  to  provide  their  opinion  in  a  court  of  law?   These  questions,  too,  are  addressed  in  Fed.  R.  Evid.  702.    It  only  allows   experts  “qualified  …  by  knowledge,  skill,  experience,  training,  or  education.“     To  be  considered  a  true  expert  in  any  field  generally  requires  a  significant   level  of  training  and  experience.  The  various  forensic  disciplines  follow   different  training  plans,  but  most  include  in-­‐house  training,  assessments  and   practical  exams,  and  continuing  education.  Oral  presentation  practice,   including  moot  court  experience  (simulated  courtroom  proceeding),  is  very   helpful  in  preparing  examiners  for  questioning  in  a  trial.     Normally,  the  individual  that  issued  the  laboratory  report  would  serve  as  the   expert  at  court.  By  issuing  a  report,  that  individual  takes  responsibility  for   the  analysis.  This  person  could  be  a  supervisor  or  technical  leader,  but   doesn’t  necessarily  need  to  be  the  one  who  did  the  analysis.  The  opposition   may  also  call  in  experts  to  refute  this  testimony,  and  both  witnesses  are   subject  to  the  standard  in  use  by  that  court  (Frye,  Daubert,  Fed.  R.  Evid  702)   regarding  their  expertise.       Each  court  can  accept  any  person  as  an  expert,  and  there  have  been   instances  where  individuals  who  lack  proper  training  and  background  have   been  declared  experts.  When  necessary,  the  opponent  can  question  potential   witnesses  in  an  attempt  to  show  that  they  do  not  have  applicable  expertise   and  are  not  qualified  to  testify  on  the  topic.    The  admissibility  decision  is  left   to  the  judge.       Additional  Resources   Publications:   Saferstein,  Richard.  C RIMINALISTICS:    A N  INTRODUCTION  T O  F ORENSIC   S CIENCE ,  Pearson  Education,  Inc.,  Upper  Saddle  River,  NJ  (2007).   McClure,  David.  Report:  Focus  Group  on  Scientific  and  Forensic  Evidence  in   the  Courtroom  (online),  2007,   https://www.ncjrs.gov/pdffiles1/nij/grants/220692.pdf  (accessed  July  19,  2012)   Acknowledgements   The  authors  wish  to  thank  the  following  for  their  invaluable  contributions  to   this  guide:   Robin  Whitley,  Chief  Deputy,  Appellate  Division,  Denver  District  Attorney’s   Office,  Second  Judicial  District   Debra  Figarelli,  DNA  Technical  Manager,  National  Forensic  Science   Technology  Center,  Inc.   About This Project This  project  was  developed  and  designed  by  the  National  Forensic  Science   Technology  Center  (NFSTC)  under  a  cooperative  agreement  from  the  Bureau   of  Justice  Assistance  (BJA),  award  #2009-­‐D1-­‐BX-­‐K028.    Neither  the  U.S.   Department  of  Justice  nor  any  of  its  components  operate,  control,  are   responsible  for,  or  necessarily  endorse,  the  contents  herein.   National  Forensic  Science  Technology  Center®   NFSTC  Science  Serving  Justice®   8285  Bryan  Dairy  Road,  Suite  125   Largo,  Florida  33777   (727)  395-­‐2511   [email protected]                  

Use Quizgecko on...
Browser
Browser