Summary

This document appears to be a study guide or chapter from a textbook on the autonomic nervous system. It contains information about the functions and features of the autonomic nervous system.

Full Transcript

‭. Structural and Functional Differences Between ANS‬ 3 ‭ tudy Guide: Chapter 15 – The Autonomic‬ S...

‭. Structural and Functional Differences Between ANS‬ 3 ‭ tudy Guide: Chapter 15 – The Autonomic‬ S ‭and Somatic Nervous System (SNS)‬ ‭Nervous System (ANS)‬ ‭Feature‬ ‭Autonomic Nervous System (ANS)‬ ‭Somatic Nervous System‬ ‭(SNS)‬ ‭Textbook Reference‬‭: Saladin Anatomy and Physiology,‬‭10th edition‬ ‭Control‬ ‭Involuntary‬ ‭Voluntary‬ ‭Motor Pathway‬ ‭ wo neurons: preganglionic and‬ T ‭ ne neuron (CNS → skeletal‬ O ‭postganglionic‬ ‭muscle)‬ ‭. Functions and Features of the Autonomic Nervous‬ 1 ‭Ganglia‬ ‭Present (autonomic ganglia)‬ ‭Absent‬ ‭System (ANS)‬ ‭Effector Organs‬ ‭Smooth/cardiac muscles, glands‬ ‭Skeletal muscles‬ ‭‬ D ‭ efinition‬‭: The ANS regulates involuntary processes,‬‭such as heart rate, digestion,‬ ‭respiration, and glandular secretion.‬ ‭ eurotransmitter‬ N ‭ACh (PSNS); ACh & NE (SNS)‬ ‭Acetylcholine (ACh)‬ ‭‬ ‭Functions‬‭:‬ ‭s‬ ‭○‬ ‭Maintains‬‭homeostasis‬‭by controlling visceral organs.‬ ‭○‬ ‭Operates‬‭automatically‬‭without conscious effort.‬ ‭Effect‬ ‭Excitatory or inhibitory‬ ‭Always excitatory‬ ‭○‬ ‭Adjusts organ activity in response to internal or external changes.‬ ‭‬ ‭Key Features‬‭:‬ ‭○‬ ‭Divided into‬‭Sympathetic Nervous System (SNS)‬‭and‬‭Parasympathetic‬ ‭Nervous System (PSNS)‬‭.‬ ‭4. Parasympathetic vs. Sympathetic Divisions of the ANS‬ ‭○‬ ‭Involves‬‭two-neuron pathways‬‭(preganglionic and postganglionic‬‭neurons).‬ ‭Feature‬ ‭Parasympathetic Division‬ ‭Sympathetic Division (SNS)‬ ‭○‬ ‭Influences smooth muscle, cardiac muscle, and glands.‬ ‭(PSNS)‬ ‭Origin in CNS‬ ‭ raniosacral (brainstem and‬ C ‭Thoracolumbar (T1-L2 spinal cord)‬ ‭S2-S4 spinal cord)‬ ‭2. Characteristics of Visceral Reflexes‬ ‭Ganglionic Fibers‬ L ‭ ong preganglionic, short‬ ‭ hort preganglionic, long‬ S ‭postganglionic‬ ‭postganglionic‬ ‭‬ D ‭ efinition‬‭: Unconscious, automatic responses to stimulation‬‭involving visceral organs.‬ ‭‬ ‭Characteristics‬‭:‬ ‭ eurotransmitter‬ N ‭ cetylcholine (ACh) at both‬ A ‭ Ch at preganglionic; NE‬ A ‭○‬ ‭Receptors detect internal changes (e.g., blood pressure, pH).‬ ‭s‬ ‭synapses‬ ‭(norepinephrine) at postganglionic‬ ‭○‬ ‭Afferent neurons carry signals to the CNS.‬ ‭synapse‬ ‭○‬ ‭Integrating centers in the CNS process the information.‬ ‭○‬ ‭Efferent pathways consist of two neurons (preganglionic and postganglionic).‬ ‭Receptors‬ ‭ icotinic and muscarinic‬ N ‭ icotinic (preganglionic) and‬ N ‭○‬ ‭Effectors are smooth/cardiac muscles or glands.‬ ‭receptors‬ ‭adrenergic (target) receptors‬ ‭‬ ‭Example‬‭:‬‭Baroreflex‬‭(regulation of blood pressure)‬ ‭○‬ ‭Receptor‬‭: Baroreceptors in arteries detect high blood pressure.‬ ‭ eneral‬ G “‭ Rest and digest”: promotes‬ “‭ Fight or flight”: prepares body for‬ ‭○‬ ‭Afferent Pathway‬‭: Signal sent to medulla oblongata.‬ ‭Functions‬ ‭energy conservation‬ ‭action‬ ‭○‬ ‭Efferent Pathway‬‭: Vagus nerve (PSNS) reduces heart‬‭rate.‬ ‭○‬ ‭Effector‬‭: Heart rate slows, lowering blood pressure.‬ ‭‬ ‭Phasic Receptors‬‭: Adapt quickly; detect changes.‬ ‭○‬ ‭Example‬‭: Smell, pressure.‬ ‭ tudy Guide: Chapter 16 – Sensory‬ S ‭‬ ‭Tonic Receptors‬‭: Adapt slowly; continue signaling.‬ ‭○‬ ‭Example‬‭: Pain receptors, muscle spindles.‬ ‭Physiology‬ ‭Textbook Reference‬‭:‬‭Saladin Anatomy and Physiology‬‭,‬‭10th edition‬ ‭5. Factors Affecting Sensory Perception‬ ‭‬ ‭Attention, experience, emotion, receptor sensitivity, stimulus strength, and context.‬ ‭1. Sensory Receptors vs. Sensory Organs‬ ‭‬ ‭Sensory Receptors‬‭: Specialized cells or nerve endings‬‭that detect specific stimuli.‬ ‭6. General vs. Special Senses‬ ‭○‬ ‭Examples‬‭: Thermoreceptors (temperature), photoreceptors‬‭(light), nociceptors‬ ‭(pain).‬ ‭‬ G ‭ eneral Senses‬‭: Widely distributed; detect touch,‬‭pressure, pain, temperature,‬ ‭‬ ‭Sensory Organs‬‭: Structures composed of sensory receptors‬‭and other tissues (e.g.,‬ ‭proprioception.‬ ‭connective tissue) that enhance detection of stimuli.‬ ‭○‬ ‭Examples‬‭: Tactile receptors, nociceptors.‬ ‭○‬ ‭Examples‬‭: Eyes, ears, taste buds.‬ ‭‬ ‭Special Senses‬‭: Localized in specific organs; detect‬‭vision, hearing, equilibrium, taste,‬ ‭smell.‬ ‭○‬ ‭Examples‬‭: Eyes, ears, taste buds.‬ ‭2. Sensory Information: Four Types‬ ‭‬ T ‭ ype‬‭: Identifies the nature of the stimulus (e.g.,‬‭heat, light, pressure).‬ ‭7. Sensory Receptor Types and Special Senses‬ ‭‬ ‭Location‬‭: Determined by which receptive field is stimulated.‬ ‭‬ ‭Intensity‬‭: Encoded by:‬ ‭Receptor Type‬ ‭Stimulus‬ ‭Special Sense‬ ‭○‬ ‭Number of receptors activated.‬ ‭○‬ ‭Frequency of action potentials.‬ ‭Thermoreceptors‬ ‭ emperature‬ T ‭N/A‬ ‭‬ ‭Duration‬‭: How long the stimulus lasts.‬ ‭changes‬ ‭Photoreceptors‬ ‭Light‬ ‭Vision‬ ‭Nociceptors‬ ‭Pain‬ ‭N/A‬ ‭3. Receptive Field and Touch Discrimination‬ ‭ echanoreceptor‬ M ‭Pressure, vibration‬ ‭Hearing, equilibrium‬ ‭‬ R ‭ eceptive Field‬‭: Area monitored by a single sensory‬‭receptor.‬ ‭s‬ ‭‬ ‭Touch Discrimination‬‭: The ability to distinguish between‬‭two points of touch.‬ ‭○‬ ‭Smaller receptive fields‬‭→ Greater touch discrimination‬‭(e.g., fingertips).‬ ‭Chemoreceptors‬ ‭Chemicals‬ ‭Taste, smell‬ ‭○‬ ‭Larger receptive fields‬‭→ Lower discrimination (e.g.,‬‭back).‬ ‭8. Receptors for General Senses‬ ‭4. Sensory Adaptation and Receptor Types‬ ‭‬ T ‭ actile Corpuscles‬‭: Light touch.‬ ‭‬ ‭Lamellar (Pacinian) Corpuscles‬‭: Deep pressure, vibration.‬ ‭‬ ‭Sensory Adaptation‬‭: Reduced sensitivity to a constant stimulus.‬ ‭‬ ‭Muscle Spindles‬‭: Muscle stretch.‬ ‭‬ ‭End Bulbs‬‭: Light touch, texture.‬ ‭14. Three Regions of the Ear and Their Function‬ ‭‬ O ‭ uter Ear‬‭: Collects sound waves.‬ ‭‬ ‭Middle Ear‬‭: Amplifies sound vibrations (ossicles).‬ ‭9. Pain and Referred Pain‬ ‭‬ ‭Inner Ear‬‭: Converts vibrations to neural signals (hearing)‬‭and detects balance.‬ ‭‬ ‭Pain‬‭: Detected by nociceptors.‬ ‭○‬ ‭Fast Pain: Sharp, localized (A-delta fibers).‬ ‭○‬ ‭Slow Pain: Dull, diffuse (C fibers).‬ ‭15. Cochlea, Vestibule, and Semicircular Canals‬ ‭‬ ‭Referred Pain‬‭: Pain felt in a location distant from‬‭its origin due to shared nerve‬ ‭pathways.‬ ‭‬ C ‭ ochlea‬‭: Converts sound to nerve signals.‬ ‭○‬ ‭Example‬‭: Heart attack pain in the left arm.‬ ‭‬ ‭Vestibule‬‭: Detects static equilibrium.‬ ‭‬ ‭Semicircular Canals‬‭: Detect dynamic equilibrium.‬ ‭10. Pain Modulation‬ ‭16. Events of Hearing and Equilibrium‬ ‭‬ E ‭ ndogenous opioids (e.g., enkephalins, endorphins) block pain transmission.‬ ‭‬ ‭Gate Control Theory‬‭: Non-painful stimuli close “gates”‬‭to block pain signals.‬ ‭‬ H ‭ earing‬‭: Sound waves → Tympanic membrane → Ossicles‬‭→ Cochlea → Hair cells →‬ ‭Nerve signals.‬ ‭‬ ‭Equilibrium‬‭: Movement of endolymph in vestibular apparatus‬‭→ Activates hair cells.‬ ‭11. Primary Taste Sensations and Influences‬ ‭ ‬ ‭Five Tastes‬‭: Sweet, salty, sour, bitter, umami.‬ ‭17. Pitch and Loudness‬ ‭‬ ‭Influences‬‭: Smell, texture, temperature, genetics,‬‭mental state.‬ ‭‬ P ‭ itch‬‭: Determined by frequency.‬ ‭‬ ‭Loudness‬‭: Determined by amplitude.‬ ‭12. Olfactory Receptors and Perception of Smell‬ ‭ ‬ ‭Location‬‭: Olfactory epithelium in the nasal cavity.‬ ‭18. Static vs. Dynamic Equilibrium‬ ‭‬ ‭Influences‬‭: Age, adaptation, exposure, concentration.‬ ‭‬ S ‭ tatic‬‭: Perception of head orientation when stationary.‬ ‭‬ ‭Dynamic‬‭: Perception of motion or acceleration.‬ ‭13. Physiology of Taste and Smell‬ ‭‬ G ‭ ustation‬‭: Chemicals dissolve in saliva → Activate‬‭taste buds → Cranial nerves (VII,‬ ‭19. Accessory Structures of the Eye‬ ‭IX, X) → Brain.‬ ‭‬ ‭Olfaction‬‭: Odorants bind to olfactory receptors → Cranial nerve I → Olfactory bulb →‬ ‭‬ E ‭ xamples‬‭: Eyelids, eyelashes, eyebrows, lacrimal glands.‬ ‭Brain.‬ ‭‬ ‭Functions‬‭: Protect, lubricate, and clean the eye.‬ ‭20. Anatomy of the Eye and Functions‬ ‭‬ ‭ ornea‬‭: Refracts light.‬ C ‭26. Color Vision‬ ‭‬ ‭Lens‬‭: Adjusts focus.‬ ‭‬ ‭Retina‬‭: Photoreception.‬ ‭‬ D ‭ ifferential activation of the‬‭three photopsins‬‭(red,‬‭green, blue) leads to color‬ ‭‬ ‭Iris‬‭: Regulates light entry.‬ ‭perception.‬ ‭21. Eye Disorders‬ ‭27. Visual Pathway‬ ‭‬ C ‭ ataracts‬‭: Clouding of the lens.‬ ‭‬ ‭Retina → Optic Nerve → Optic Chiasm → Optic Tract → Occipital Lobe.‬ ‭‬ ‭Glaucoma‬‭: Increased intraocular pressure damages the‬‭optic nerve.‬ ‭‬ ‭Macular Degeneration‬‭: Damage to macula; central vision‬‭loss.‬ ‭28. Effects of Visual Pathway Damage‬ ‭22. Image Formation: Refraction and Accommodation‬ ‭‬ O ‭ ptic Nerve‬‭: Total blindness in one eye.‬ ‭‬ ‭Optic Chiasm‬‭: Loss of peripheral vision (bitemporal‬‭hemianopia).‬ ‭‬ R ‭ efraction‬‭: Bending of light by cornea and lens.‬ ‭‬ ‭Optic Tract‬‭: Loss of vision in one visual field (homonymous‬‭hemianopia).‬ ‭‬ ‭Accommodation‬‭: Lens changes shape to focus on near‬‭or distant objects.‬ ‭23. Hyperopia vs. Myopia‬ ‭Condition‬ ‭Focus Location‬ ‭Correction‬ ‭ tudy Guide: Chapter 17 – The Endocrine‬ S ‭Hyperopia‬ ‭Behind the retina‬ ‭Convex lens‬ ‭System‬ ‭Myopia‬ ‭In front of the retina‬ C ‭ oncave‬ ‭lens‬ ‭Textbook Reference‬‭:‬‭Saladin Anatomy and Physiology,‬‭10th edition‬ ‭24. Fovea Centralis and Optic Disc‬ ‭1. Compare and Contrast the Nervous and Endocrine Systems‬ ‭‬ F ‭ ovea Centralis‬‭: Area of sharpest vision (high concentration‬‭of cones).‬ ‭‬ ‭Optic Disc‬‭: “Blind spot”; no photoreceptors.‬ ‭Feature‬ ‭Nervous System‬ ‭Endocrine System‬ ‭25. Rods vs. Cones‬ ‭Communication‬ ‭ lectrical signals (action‬ E ‭Hormones in the bloodstream‬ ‭potentials)‬ ‭‬ R ‭ ods‬‭: Detect dim light; black/white vision.‬ ‭‬ ‭Cones‬‭: Detect bright light; color vision.‬ ‭‬ ‭Receptor Properties‬‭:‬ ‭Speed‬ ‭Rapid (milliseconds)‬ ‭Slower (seconds to days)‬ ‭○‬ ‭Specific to the hormone.‬ ‭○‬ ‭Located on the‬‭plasma membrane‬‭(water-soluble hormones)‬‭or inside the cell‬ ‭(lipid-soluble hormones).‬ ‭ uration of‬ D ‭Short-lived‬ ‭Long-lasting‬ ‭Effects‬ ‭5. Chemical Classes of Hormones‬ ‭Target‬ ‭Specific (muscles, glands)‬ ‭ idespread (any cell with‬ W ‭Class‬ ‭Composition‬ ‭Solubility‬ ‭Examples‬ ‭receptors)‬ ‭Peptides‬ ‭Amino acid chains‬ ‭Water-soluble‬ ‭Insulin, oxytocin‬ ‭Mode of Action‬ ‭Neurotransmitters at synapses‬ ‭ ormones through blood‬ H ‭circulation‬ ‭Steroids‬ ‭ erived from‬ D ‭Lipid-soluble‬ ‭Cortisol, testosterone‬ ‭cholesterol‬ ‭2. Endocrine vs. Exocrine Glands‬ ‭ onoamine‬ ‭Modified amino acids‬ M ‭ ost are‬ M ‭ pinephrine, thyroid‬ E ‭‬ ‭Endocrine Glands‬‭: Release hormones into the‬‭bloodstream‬‭;‬‭no ducts.‬ ‭s‬ ‭water-soluble‬ ‭hormone‬ ‭○‬ ‭Example: Thyroid, adrenal glands.‬ ‭‬ ‭Exocrine Glands‬‭: Release products (e.g., enzymes,‬‭sweat) into‬‭ducts‬‭that lead to body‬ ‭surfaces or cavities.‬ ‭○‬ ‭Example: Sweat glands, salivary glands.‬ ‭6. Hormone Interaction with Target Cells‬ ‭‬ ‭Lipid-Soluble Hormones‬‭(e.g., steroids):‬ ‭3. Hormones, Paracrine Messengers, and Autocrine Messengers‬ ‭○‬ ‭Diffuse through the plasma membrane → Bind to‬‭intracellular‬‭receptors‬‭→‬ ‭Activate genes → Protein synthesis.‬ ‭‬ H ‭ ormones‬‭: Long-distance chemical signals transported‬‭through the bloodstream to‬ ‭‬ ‭Water-Soluble Hormones‬‭(e.g., peptides):‬ ‭target cells.‬ ‭○‬ ‭Bind to‬‭receptors on the plasma membrane‬‭→ Activate‬‭second messenger‬ ‭‬ ‭Paracrine Messengers‬‭: Local signals that act on neighboring‬‭cells.‬ ‭systems (e.g., cAMP) → Trigger intracellular changes.‬ ‭○‬ ‭Example: Histamine.‬ ‭‬ ‭Autocrine Messengers‬‭: Signals that act on the same‬‭cell that produced them.‬ ‭○‬ ‭Example: Interleukins in immune responses.‬ ‭7. Hypothalamus and Pituitary Glands‬ ‭‬ H ‭ ypothalamus‬‭: Controls the endocrine system through‬‭hormone secretion.‬ ‭4. Hormonal Specificity and Receptors‬ ‭‬ ‭Anterior Pituitary‬‭: Connected via the‬‭hypophyseal portal system‬‭; secretes hormones‬ ‭in response to releasing/inhibiting hormones.‬ ‭‬ H ‭ ormones circulate throughout the bloodstream but only affect‬‭target cells‬‭with specific‬ ‭‬ ‭Posterior Pituitary‬‭: Connected via‬‭neural connections‬‭;‬‭stores and releases oxytocin‬ ‭receptors‬‭.‬ ‭and ADH (produced by the hypothalamus).‬ ‭‬ ‭Goiter‬‭: Enlarged thyroid due to iodine deficiency‬‭or excess TSH stimulation.‬ ‭8. Location, Anatomy, and Hormones of Endocrine Glands‬ ‭‬ ‭ nterior Pituitary‬‭: Base of the brain; releases GH,‬‭TSH, ACTH, FSH, LH, PRL.‬ A ‭13. Hypo- and Hypersecretion of Thyroid and Adrenal Hormones‬ ‭‬ ‭Posterior Pituitary‬‭: Base of the brain; releases ADH,‬‭oxytocin.‬ ‭‬ ‭Thyroid Gland‬‭: Neck; releases T3, T4, calcitonin.‬ ‭‬ ‭Thyroid Hormone‬‭:‬ ‭‬ ‭Parathyroid Glands‬‭: On thyroid; release PTH.‬ ‭○‬ ‭Hyposecretion‬‭: Weight gain, fatigue, slow metabolism‬‭(hypothyroidism).‬ ‭‬ ‭Pancreas‬‭: Abdominal cavity; releases insulin, glucagon.‬ ‭○‬ ‭Hypersecretion‬‭: Weight loss, nervousness, increased‬‭metabolism‬ ‭‬ ‭Adrenal Glands‬‭: On kidneys; release cortisol, aldosterone,‬‭epinephrine,‬ ‭(hyperthyroidism).‬ ‭norepinephrine.‬ ‭‬ ‭Adrenal Hormones‬‭:‬ ‭ ‬ ‭Gonads‬‭: Ovaries (estrogen, progesterone), testes (testosterone).‬ ‭○‬ ‭Hyposecretion‬‭: Addison's disease (low cortisol).‬ ‭○‬ ‭Hypersecretion‬‭: Cushing's syndrome (high cortisol).‬ ‭9. Physiological Effects and Feedback Pathways‬ ‭14. Type 1 and Type 2 Diabetes Mellitus‬ ‭‬ ‭Example (Thyroid Hormone)‬‭:‬ ‭○‬ ‭Hypothalamus → TRH → Anterior Pituitary → TSH → Thyroid → T3/T4 →‬ ‭‬ ‭Type 1 Diabetes‬‭:‬ ‭Increases metabolism.‬ ‭○‬ ‭Cause: Autoimmune destruction of beta cells → No insulin production.‬ ‭○‬ ‭Negative Feedback‬‭: High T3/T4 inhibits TRH and TSH.‬ ‭○‬ ‭Symptoms: High blood glucose, polyuria, weight loss.‬ ‭‬ ‭Type 2 Diabetes‬‭:‬ ‭○‬ ‭Cause: Insulin resistance (cells don’t respond to insulin).‬ ‭○‬ ‭Symptoms: Similar to Type 1 but develops gradually.‬ ‭10. Negative Feedback in Hormonal Regulation‬ ‭‬ ‭Negative feedback ensures hormonal levels stay within a narrow range.‬ ‭○‬ ‭Example: Blood glucose levels – Insulin lowers blood glucose, glucagon raises it.‬ ‭11. Hormone Classification‬ ‭‬ S ‭ teroids‬‭: Lipid-soluble; derived from cholesterol.‬ ‭‬ ‭Peptides‬‭: Amino acid-based; water-soluble.‬ ‭‬ ‭Monoamines‬‭: Derived from amino acids; include catecholamines‬‭(e.g., epinephrine)‬ ‭and thyroid hormone.‬ ‭12. Gigantism, Acromegaly, Dwarfism, and Goiter‬ ‭‬ G ‭ igantism‬‭: Excess growth hormone (GH)‬‭before‬‭growth‬‭plates close.‬ ‭‬ ‭Acromegaly‬‭: Excess GH‬‭after‬‭growth plates close.‬ ‭‬ ‭Dwarfism‬‭: GH deficiency during childhood.‬

Use Quizgecko on...
Browser
Browser