Didáctica de las Matemáticas para Maestros PDF
Document Details
Uploaded by Deleted User
Juan D. Godino,Carmen Batanero,Vicenç Font
Tags
Related
- Tema 20 EP Oposiciones 24 PDF
- Lesson 1 - Learning Mathematics in the Early Years PDF
- Mathematics for Foundation Phase 1 Study Guide PDF
- Fachseminar Mathematik: Zahlen und Operationen 2024/2025 PDF
- Application of GeoGebra for Teaching Mathematics (2014) - PDF
- Мүмкіндігі шектеулі балаларға математиканы оқытудың арнайы әдістемесі PDF
Summary
This book on mathematics education provides insights for teachers. It covers various aspects, including the fundamentals of teaching and learning mathematics, as well as specific topics such as numbers and geometry.
Full Transcript
Didáctica de las Matemáticas para Maestros Proyecto Edumat-Maestros Director: Juan D. Godino http://www.ugr.es/local/jgodino/fprofesores.htm/ Proyecto Edumat-Maestros Director: Juan D. Godino http://www.ugr.es/local/jgod...
Didáctica de las Matemáticas para Maestros Proyecto Edumat-Maestros Director: Juan D. Godino http://www.ugr.es/local/jgodino/fprofesores.htm/ Proyecto Edumat-Maestros Director: Juan D. Godino http://www.ugr.es/local/jgodino/edumat-maestros/ DIDÁCTICA DE LAS MATEMÁTICAS PARA MAESTROS Dirección: Juan D. Godino 1 Didáctica de las Matemáticas para maestros DIDÁCTICA DE LAS MATEMÁTICAS PARA MAESTROS Los autores Departamento de Didáctica de la Matemática Facultad de Ciencias de la Educación Universidad de Granada 18071 Granada ISBN: 84-933517-1-7 Depósito Legal: GR-1162-2004 Impresión: GAMI, S. L. Fotocopias Publicación realizada en el marco del Avda. de la Constitución, 24. Granada Proyecto de Investigación y Desarrollo del Ministerio de Ciencia y Tecnología y Fondos FEDER, BSO2002-02452. Distribución en Internet: http://www.ugr.es/local/jgodino/edumat-maestros/ 2 Índice general Índice general Contenido: Autores: Página I. FUNDAMENTOS DE LA ENSEÑANZA Y EL APRENDIZAJE Juan D. Godino DE LAS MATEMÁTICAS Carmen Batanero Vicenç Font Índice...................................................... 5 1. Perspectiva educativa de las matemáticas............................................ 15 2. Enseñanza y aprendizaje de las matemáticas............................................ 55 3. Currículo matemático para la educación primaria.................................................. 87 4. Recursos para el estudio de las matemáticas............................................ 123 II. SISTEMAS NUMÉRICOS Eva Cid Juan D. Godino Índice...................................................... 155 Carmen Batanero 1. Números naturales. Sistemas de numeración............................................. 157 2. Adición y sustracción............................ 187 3. Multiplicación y división........................ 205 4. Fracciones y números racionales........... 221 5. Números y expresiones decimales.......... 239 6. Números positivos y negativos............... 259 III. PROPORCIONALIDAD...................... 271 Juan D. Godino Carmen Batanero 3 Didáctica de las Matemáticas para maestros Página IV. GEOMETRÍA Índice..................................................... 287 Juan D. Godino 1. Figuras geométricas............................... 291 Francisco Ruiz 2. Transformaciones geométricas. Simetría y semejanza............................................ 323 3. Orientación espacial. Sistemas de referencia................................................ 341 V. MAGNITUDES Juan D. Godino Índice...................................................... 355 Carmen Batanero 1. Magnitudes y medida.............................. 359 Rafael Roa 2. Magnitudes geométricas......................... 381 VI. ESTOCÁSTICA Carmen Batanero Juan D. Godino Índice...................................................... 405 1. Estadística............................................... 409 2. Probabilidad........................................... 425 VII. RAZONAMIENTO ALGEBRAICO 456 Juan D. Godino Vicenç Font 4 Proyecto Edumat-Maestros Director: Juan D. Godino http://www.ugr.es/local/jgodino/edumat-maestros/ I. FUNDAMENTOS DE LA ENSEÑANZA Y EL APRENDIZAJE DE LAS MATEMÁTICA PARA MAESTROS Juan D. Godino Carmen Batanero Vicenç Font 6 Índice Página Introducción....................................................................................................... 7 CAPÍTULO 1: PERSPECTIVA EDUCATIVA DE LAS MATEMÁTICAS A: Contextualización Reflexión y discusión colectiva sobre las propias creencias hacia las matemáticas........................................................................................................ 13 B: Desarrollo de conocimientos 1. Algunas concepciones sobre las matemáticas............................................... 15 1.1. Concepción idealista-platónica........................................................... 16 1.2. Concepción constructivista.................................................................. 16 2. Matemáticas y sociedad 2.1. ¿Cómo surgen las matemáticas? Algunas notas históricas................. 17 2.2. Papel de las matemáticas en la ciencia y tecnología........................... 19 2.3. Matemáticas en la vida cotidiana. Cultura matemática....................... 20 3. Rasgos característicos de las matemáticas 3.1. Modelización y resolución de problemas............................................ 22 3.2. Razonamiento matemático.................................................................. 23 3.3. Lenguaje y comunicación................................................................... 24 3.4. Estructura interna................................................................................ 25 3.5. Naturaleza relacional de las matemáticas............................................ 25 3.6. Exactitud y aproximación.................................................................... 26 4. Contenidos matemáticos: Conceptos, procedimientos y actitudes................ 26 5. Un modelo de análisis de la actividad matemática....................................... 28 5.1. Significados de la suma y la resta en un libro de texto....................... 29 5.2. Tipos de objetos que intervienen en la actividad matemática............. 33 5.3. Procesos matemáticos......................................................................... 34 5.4. Conocimientos personales e institucionales....................................... 38 6. Transposición didáctica................................................................................. 38 C: Seminario didáctico 1. Actitudes hacia las matemáticas.................................................................... 39 2. Reflexión y redacción.................................................................................... 41 3. Actividades de campo.................................................................................... 43 4. Resolución de problemas (taller matemático)............................................... 44 Bibliografía........................................................................................................ 49 7 CAPÍTULO 2: ENSEÑANZA Y APRENDIZAJE DE LAS MATEMÁTICAS Página A: Contextualización A1. Creencias sobre la enseñanza y el aprendizaje de las matemáticas............ 53 A2. Lectura, reflexión y discusión.................................................................... 55 B: Desarrollo de conocimientos 1. Introducción.................................................................................................. 56 2. Competencia y comprensión matemática 2.1. Nociones de competencia y comprensión........................................... 57 2.2. Comprensión instrumental y relacional.............................................. 58 2.3. Los objetos de comprensión y competencia....................................... 60 3. Aprender y enseñar matemáticas 3.1. Papel de la resolución de problemas en el aprendizaje matemático.... 62 3.2. Enseñanza de las matemáticas............................................................ 63 4. Estudio dirigido de las matemáticas.............................................................. 65 5. Normas sociomatemáticas. Contrato didáctico............................................. 68 6. Dificultades, errores y obstáculos................................................................. 69 7. Estándares para la enseñanza de las matemáticas 7.1. Supuestos de los estándares................................................................ 73 7.2. Tareas.................................................................................................. 75 7.3. Discurso.............................................................................................. 76 7.4. Entorno................................................................................................ 76 75. Análisis................................................................................................ 76 C: Seminario didáctico 1. Análisis de documentos curriculares..................................................... 77 2. Reflexión, redacción y discusión.......................................................... 77 3. Encuesta de actitudes a los alumnos..................................................... 77 4. Errores y obstáculos.............................................................................. 78 5. Diseño de actividades............................................................................ 78 6. Análisis de textos................................................................................... 78 Anexo 2.1. Estándares sobre la enseñanza de las matemáticas del NCTM........................ 79 Bibliografía........................................................................................................ 82 8 CAPÍTULO 3: CURRÍCULO MATEMÁTICO PARA LA EDUCACIÓN PRIMARIA Página A: Contextualización Reflexión y discusión sobre orientaciones curriculares..................................... 85 B: Desarrollo de conocimientos 1. Introducción................................................................................................... 87 2. Fines y objetivos de la educación matemática 2.1. ¿Por qué y para qué enseñar matemáticas?............................................. 89 2.2. Justificación y orientación del currículo básico del MEC...................... 89 2.3. Principios para las matemáticas escolares propuestos por el NCTM..... 93 3. Contenidos matemáticos en primaria 3.1 Diferentes tipos de contenidos: conceptos, procedimientos y actitudes 95 3.2. Bloques de contenidos en el currículo básico del MEC y su estructuración................................................................................................... 95 3.3. Estándares de contenidos y procesos del NCTM.................................... 98 4. Orientaciones sobre la evaluación 4.1. Fines y tipos de evaluación. Principios básicos.................................. 101 4.2. La evaluación en el currículo básico del MEC....................................... 102 4.3. La evaluación en los Estándares del NCTM............................................ 104 5. Diseño y gestión de unidades didácticas 5.1 Elementos a tener en cuenta en la planificación de una unidad didáctica..................................................................................................... 108 5.2 Diseño de una unidad didáctica........................................................... 109 5.3 Gestión de unidades didácticas. Adaptaciones.................................... 110 5.4 La evaluación de la unidad didáctica................................................... 111 C: Seminario didáctico 1. Análisis de textos y documentos curriculares............................................... 112 2. Diferentes tipos de contenidos...................................................................... 112 3. Actividades de campo.................................................................................... 113 4. Diseño de secuencias de actividades............................................................. 113 Bibliografía....................................................................................................... 116 CAPÍTULO 4: RECURSOS PARA EL ESTUDIO DE LAS MATEMÁTICAS A: Contextualización Reflexión y discusión colectiva sobre los recursos didácticos en la enseñanza de las matemáticas............................................................................................. 121 B: Desarrollo de conocimientos 1. Introducción................................................................................................... 123 2. Recursos didácticos....................................................................................... 123 3. Ayudas al estudio de las matemáticas 9 Página 3.1. Los libros de texto y apuntes.......................................................... 124 3.2. Las tareas matemáticas y situaciones didácticas entendidas como recurso. Variables de tarea..................................................................... 126 4. Material manipulativo.................................................................................. 127 4.1. Funciones del material textual........................................................ 130 4.2. El material manipulativo como puente entre la realidad y los objetos matemáticos.................................................................. 132 4.3. Algunas precauciones..................................................................... 134 4.4. Relaciones de los manipulativos con las situaciones didácticas..... 136 5. Recursos tecnológicos 5.1. Calculadoras................................................................................... 138 5.2. Ordenadores.................................................................................... 139 5.3. Internet........................................................................................... 140 5.4. Vídeo.............................................................................................. 141 6.Juegos............................................................................................................. 141 7. Posiciones extremas: Formalismo y empirismo............................................ 141 C: Seminario didáctico 1. Análisis de documentos curriculares..................................................... 143 2. Análisis de actividades y libros de texto................................................ 143 3. El material manipulativo como puente entre la realidad y los objetos matemáticos............................................................................................ 146 4. Calculadoras........................................................................................... 147 5. Programas informáticos......................................................................... 147 6. Internet................................................................................................... 148 Bibliografía........................................................................................................ 149 10 INTRODUCCIÓN En esta Monografía sobre "Fundamentos de la enseñanza y el aprendizaje de las matemáticas para maestros" nos proponemos ofrecer una visión general de la educación matemática. Tratamos de crear un espacio de reflexión y estudio sobre las matemáticas, en cuanto objeto de enseñanza y aprendizaje, y sobre los instrumentos conceptuales y metodológicos de índole general que la Didáctica de las Matemáticas está generando como campo de investigación. Deseamos que los maestros en formación adquieran una visión de la enseñanza de las matemáticas que contemple:1 - Las clases como comunidades matemáticas, y no como una simple colección de individuos. - La verificación lógica y matemática de los resultados, frente a la visión del profesor como única fuente de respuestas correctas. - El razonamiento matemático, más que los procedimientos de simple memorización. - La formulación de conjeturas, la invención y la resolución de problemas, descartando el énfasis en la búsqueda mecánica de respuestas. - La conexión de las ideas matemáticas y sus aplicaciones, frente a la visión de las matemáticas como un cuerpo aislado de conceptos y procedimientos. Los siguientes principios de la enseñanza de las matemáticas descritos en los Principios y Estándares 2000 del NCTM2 orientan el contenido de la Monografía: 1. Equidad. La excelencia en la educación matemática requiere equidad – unas altas expectativas y fuerte apoyo para todos los estudiantes. 2. Currículo. Un currículo es más que una colección de actividades: debe ser coherente, centrado en unas matemáticas importantes y bien articuladas a lo largo de los distintos niveles. 1 NCTM (1991). Professional Standards for Teaching Mathematics. Reston, VA: National Council of Teachers of Mathematics. 2 NCTM (2000). Principles and Standards for School Mathematics. Reston. VA: National Council of Teachers of Mathematics. 11 3. Enseñanza. Una enseñanza efectiva de las matemáticas requiere comprensión de lo que los estudiantes conocen y necesitan aprender, y por tanto les desafían y apoyan para aprenderlas bien. 4. Aprendizaje. Los estudiantes deben aprender matemáticas comprendiéndolas, construyendo activamente el nuevo conocimiento a partir de la experiencia y el conocimiento previo. 5. Evaluación. La evaluación debe apoyar el aprendizaje de unas matemáticas importantes y proporcionar información útil tanto a los profesores como a los estudiantes. 6. Tecnología. La tecnología es esencial en la enseñanza y el aprendizaje de las matemáticas; influye en las matemáticas que se enseñan y estimula el aprendizaje de los estudiantes. Estos seis principios describen cuestiones cruciales que, aunque no sean específicas de las matemáticas escolares, están profundamente interconectadas con los programas de matemáticas. Deben ser tenidos en cuenta en el desarrollo de propuestas curriculares, la selección de materiales, la planificación de unidades didácticas, el diseño de evaluaciones, las decisiones instruccionales en las clases, y el establecimiento de programas de apoyo para el desarrollo profesional de los profesores. El primer capítulo está centrado en el análisis del propio contenido matemático, con la finalidad de hacer reflexionar a los maestros en formación sobre sus propias creencias y actitudes hacia las matemáticas e inducir en ellos una visión constructiva y sociocultural de las mismas. Tras presentar una síntesis del papel que las matemáticas desempeñan en la ciencia, la tecnología y en la vida cotidiana describimos algunos rasgos característicos de las matemáticas, tomando como referencia las orientaciones del currículo básico de matemáticas propuesto por el MEC. Destacamos el carácter evolutivo del conocimiento matemático, el papel de la resolución de problemas y la modelización, el razonamiento, lenguaje y comunicación, la estructura lógica y naturaleza relacional de las matemáticas, así como la dialéctica entre exactitud y aproximación. En este capítulo también describimos las tres categorías básicas de contenidos que propone el Diseño Curricular Básico (conceptos, procedimientos y actitudes), y razonamos que el análisis de la actividad matemática y de los procesos de enseñanza y aprendizaje en las clases requiere adoptar un modelo epistemológico más detallado, considerando como objetos matemáticos las propias situaciones - problemas, el lenguaje, las propiedades y argumentaciones, además de los conceptos y procedimientos. Junto a estos objetos matemáticos es necesario tener en cuenta en la organización de la enseñanza los procesos matemáticos de 12 resolución de problemas, representación, comunicación, justificación, conexiones e institucionalización. El segundo capítulo lo dedicamos al estudio de los procesos de enseñanza y aprendizaje de las matemáticas, comenzando con una situación de contextualización sobre las creencias de los maestros en formación acerca de la enseñanza y el aprendizaje de nuestra materia. Hemos considerado necesario iniciar el tema con un breve análisis de las nociones de competencia y comprensión matemática, esto es, sobre lo que vamos a considerar como "conocer matemáticas" desde el punto de vista del sujeto que aprende. No parece posible tomar decisiones educativas apropiadas si no adoptamos previamente criterios claros sobre lo que vamos a considerar qué es "saber matemáticas". Sin privar de importancia a los enfoques constructivistas en el estudio de las matemáticas consideramos necesario reconocer explícitamente el papel crucial del profesor en la organización, dirección y promoción de los aprendizajes de los estudiantes. Una instrucción matemática significativa debe atribuir un papel clave a la interacción social, a la cooperación, al discurso del profesor, a la comunicación, además de a la interacción del sujeto con las situaciones-problemas. El maestro en formación debe ser consciente de la complejidad de la tarea de la enseñanza si se desea lograr un aprendizaje matemático significativo. Será necesario diseñar y gestionar una variedad de tipos de situaciones didácticas, implementar una variedad de patrones de interacción y tener en cuenta las normas, con frecuencia implícitas, que regulan y condicionan la enseñanza y los aprendizajes. Finalizamos el desarrollo de los conocimientos del capítulo 2 con información sobre los tipos de dificultades, errores y obstáculos en el estudio de las matemáticas y una síntesis de los "Estándares para la enseñanza de las matemáticas", elaborados por la prestigiosa sociedad NCTM de profesores de matemáticas de EE.UU. El tercer capítulo está dedicado al estudio del currículo de matemáticas, al nivel de propuestas curriculares básicas y de programación de unidades didácticas. Presentamos una síntesis de las orientaciones curriculares del MEC para el área de matemáticas, incluyendo los fines y objetivos, contenidos y evaluación, así como las principales características de los Principios y Estándares para las matemáticas escolares del NCTM. Esta información aportará a los maestros en formación una visión complementaria y crítica, tanto de las orientaciones propuestas a nivel del estado español como de las respectivas comunidades autonómicas. Respecto del diseño y gestión de unidades didácticas describimos los principales elementos a tener en cuenta en la planificación, gestión y evaluación de las unidades, así como las correspondientes adaptaciones curriculares para alumnos con necesidades específicas. 13 El último capítulo incluido en la Monografía lo dedicamos al estudio de los recursos didácticos utilizables en la enseñanza y aprendizaje de las matemáticas. Presentamos una perspectiva general de los recursos, incluyendo desde los libros de texto, materiales manipulativos, gráficos y textuales, hasta los recursos tecnológicos (calculadoras, ordenadores, internet, etc.). El maestro en formación debe lograr una actitud propicia al uso de materiales manipulativos de toda índole, incardinados como elementos de las situaciones didácticas, pero al mismo tiempo es necesario que construya una actitud crítica al uso indiscriminado de tales recursos. Razonamos que el material manipulativo (sea tangible o gráfico-textual) puede ser un puente entre la realidad y los objetos matemáticos, pero es necesario adoptar precauciones para no caer en un empirismo ciego ni en un formalismo estéril. En cuanto a las referencias bibliográficas hemos adoptado el criterio de incluir a pié de página las principales fuentes documentales que hemos utilizado de manera directa. Al final de cada capítulo hemos añadido alguna bibliografía que consideramos de interés como complemento y que son accesibles para el maestro en formación. Cada capítulo ha sido estructurado en tres secciones. En la primera sección, que denominamos Contextualización, proponemos una situación inicial de reflexión y discusión colectiva sobre un aspecto del tema, En la segunda, Desarrollo de conocimientos, presentamos las principales posiciones e informaciones, así como una colección de actividades o tareas intercaladas en el texto que pueden servir como situaciones introductorias a los distintos apartados, o bien como complemento y evaluación del estudio. La tercera sección, Seminario didáctico, incluye una colección de "problemas de didáctica de las matemáticas" que amplían la reflexión y el análisis de los conocimientos propuestos en cada tema. Esperamos que este texto, que hemos intentado que sea a la vez riguroso y de lectura asequible, pueda servir a los futuros maestros para aumentar su interés por las matemáticas y su enseñanza Los autores 14 Proyecto Edumat-Maestros Director: Juan D. Godino http://www.ugr.es/local/jgodino/edumat-maestros/ Capítulo 1 PERSPECTIVA EDUCATIVA DE LAS MATEMÁTICAS J. D. Godino, C. Batanero y V. Font 16 Perspectiva educativa de las matemáticas A: Contextualización REFLEXIÓN Y DISCUSIÓN COLECTIVA SOBRE LAS PROPIAS CREENCIAS HACIA LAS MATEMÁTICAS Consigna: A continuación se presentan algunos enunciados que reflejan diferentes modos de pensar sobre las matemáticas, el conocimiento matemático y la habilidad para hacer matemáticas. 1) Completa el cuestionario, leyendo con atención los enunciados e indicando el grado de acuerdo con cada uno de ellos, mediante un valor numérico, siguiendo el convenio presentado. 2) Si no estás de acuerdo con alguno de los enunciados, indica tus razones. Cuestionario1 Indica tu grado de acuerdo con cada enunciado, según el siguiente convenio: 1: Totalmente en desacuerdo; 2: En desacuerdo; 3: Neutral (ni de acuerdo ni en desacuerdo); 4: De acuerdo; 5: Totalmente de acuerdo: 1. Las matemáticas son esencialmente un conjunto de conocimientos (hechos, reglas, fórmulas y procedimientos socialmente útiles). 1 2 3 4 5 2. Las matemáticas son esencialmente una manera de pensar y resolver problemas. 1 2 3 4 5 3. Se supone que las matemáticas no tienen que tener significado. 1 2 3 4 5 4. Las matemáticas implican principalmente memorización y seguimiento de reglas. 1 2 3 4 5 5. La eficacia o dominio de las matemáticas se caracteriza por una habilidad en conocer hechos aritméticos o de hacer cálculos rápidamente. 1 2 3 4 5 6. El conocimiento matemático esencialmente es fijo e inmutable. 1 Baroody, A. J. y Coslick, R. T. (1998). Fostering children's mathematical power. An investigative approach to K-8 mathematics instruction..London: Lawrence Erlbaum Ass. (p. 1-8) 17 J. D. Godino, C. Batanero y V. Font 1 2 3 4 5 7. Las matemáticas están siempre bien definidas; no están abiertas a cuestionamientos, argumentos o interpretaciones personales. 1 2 3 4 5 8. La habilidad matemática es esencialmente algo con lo que se nace o no se nace. 1 2 3 4 5 7. Los matemáticos trabajan típicamente aislados unos de otros. 1 2 3 4 5 18 Perspectiva educativa de las matemáticas B: Desarrollo de conocimientos 1. ALGUNAS CONCEPCIONES SOBRE LAS MATEMÁTICAS En la reflexión sobre las propias concepciones hacia las matemáticas habrán surgido diversas opiniones y creencias sobre las matemáticas, la actividad matemática y la capacidad para aprender matemáticas. Pudiera parecer que esta discusión está muy alejada de los intereses prácticos del profesor, interesado fundamentalmente por cómo hacer más efectiva la enseñanza de las matemáticas (u otro tema) a sus alumnos. La preocupación sobre qué es un cierto conocimiento, forma parte de la epistemología o teoría del conocimiento, una de las ramas de la filosofía. Sin embargo, las creencias sobre la naturaleza de las matemáticas son un factor que condiciona la actuación de los profesores en la clase, como razonamos a continuación. Supongamos, por ejemplo, que un profesor cree que los objetos matemáticos tienen una existencia propia (incluso aunque esta “existencia” sea no material). Para él, objetos tales como “triángulo”, “suma”, “fracciones”, “probabilidad”, existen, tal como lo hacen los elefantes o los planetas. En este caso, sólo tenemos que ayudar a los niños a “descubrirlos”, ya que son independientes de las personas que los usan y de los problemas a los que se aplican, e incluso de la cultura. Para este profesor, la mejor forma de enseñar matemáticas sería la presentación de estos objetos, del mismo modo que la mejor forma de hacer que un niño comprenda qué es un elefante es llevarlo al zoológico, o mostrarle un vídeo sobre la vida de los elefantes. ¿Cómo podemos mostrar lo que es un círculo u otro objeto matemático? La mejor forma sería enseñar sus definiciones y propiedades, esto es lo que este profesor consideraría “saber matemáticas”. Las aplicaciones de los conceptos o la resolución de problemas matemáticos serían secundarios para este profesor. Éstas se tratarían después de que el alumno hubiera aprendido las matemáticas. 1. Para los siguientes objetos matemáticos, razona si su existencia es o no independiente de la cultura: a) sistema de numeración; b) unidades de medida; c) notación algebraica. Otros profesores consideran las matemáticas como un resultado del ingenio y la actividad humana (como algo construido), al igual que la música, o la literatura. Para ellos, las matemáticas se han inventado, como consecuencia de la curiosidad del hombre y su necesidad de resolver una amplia variedad de problemas, como, por ejemplo, intercambio de objetos en el comercio, construcción, ingeniería, astronomía, etc. Para estos profesores, el carácter más o menos fijo que hoy día –o en una etapa histórica anterior- tienen los objetos matemáticos, es debido a un proceso de negociación social. Las personas que han creado estos objetos han debido ponerse de 19 J. D. Godino, C. Batanero y V. Font acuerdo en cuanto a sus reglas de funcionamiento, de modo que cada nuevo objeto forma un todo coherente con los anteriores. Por otro lado, la historia de las matemáticas muestra que las definiciones, propiedades y teoremas enunciados por matemáticos famosos también son falibles y están sujetos a evolución. De manera análoga, el aprendizaje y la enseñanza deben tener en cuenta que es natural que los alumnos tengan dificultades y cometan errores en su proceso de aprendizaje y que se puede aprender de los propios errores. Esta es la posición de las teorías psicológicas constructivistas sobre el aprendizaje de las matemáticas, las cuales se basan a su vez en la visión filosófica sobre las matemáticas conocida como constructivismo social. 2. Busca algún episodio de historia de las matemáticas en que se muestre cómo un concepto ha evolucionado. 1.1. Concepción idealista-platónica Entre la gran variedad de creencias sobre las relaciones entre las matemáticas y sus aplicaciones y sobre el papel de éstas en la enseñanza y el aprendizaje, podemos identificar dos concepciones extremas. Una de estas concepciones, que fue común entre muchos matemáticos profesionales hasta hace unos años, considera que el alumno debe adquirir primero las estructuras fundamentales de las matemáticas de forma axiomática. Se supone que una vez adquirida esta base, será fácil que el alumno por sí solo pueda resolver las aplicaciones y problemas que se le presenten. Según esta visión no se puede ser capaz de aplicar las matemáticas, salvo en casos muy triviales, si no se cuenta con un buen fundamento matemático. La matemática pura y la aplicada serían dos disciplinas distintas; y las estructuras matemáticas abstractas deben preceder a sus aplicaciones en la Naturaleza y Sociedad. Las aplicaciones de las matemáticas serían un "apéndice" en el estudio de las matemáticas, de modo que no se producirían ningún perjuicio si este apéndice no es tenido en cuenta por el estudiante. Las personas que tienen esta creencia piensan que las matemáticas son una disciplina autónoma. Podríamos desarrollar las matemáticas sin tener en cuenta sus aplicaciones a otras ciencias, tan solo en base a problemas internos a las matemáticas. Esta concepción de las matemáticas se designa como "idealista-platónica". Con esta concepción es sencillo construir un currículo, puesto que no hay que preocuparse por las aplicaciones en otras áreas. Estas aplicaciones se “filtrarían”, abstrayendo los conceptos, propiedades y teoremas matemáticos, para constituir un dominio matemático “puro”. 3. Consulta algunos libros de texto destinados a estudiantes de secundaria o de primeros cursos de Universidad y escritos en los años 70 y 80. Compara con algunos libros recientes destinados a los mismos alumnos. ¿Puedes identificar si la concepción del autor del texto sobre las matemáticas es de tipo platónico? ¿Cómo lo deduces? 1.2. Concepción constructivista Otros matemáticos y profesores de matemáticas consideran que debe haber una estrecha relación entre las matemáticas y sus aplicaciones a lo largo de todo el currículo. Piensan 20 Perspectiva educativa de las matemáticas que es importante mostrar a los alumnos la necesidad de cada parte de las matemáticas antes de que les sea presentada. Los alumnos deberían ser capaces de ver cómo cada parte de las matemáticas satisfacen una cierta necesidad. Ejemplo: Poniendo a los niños en situaciones de intercambio les creamos la necesidad de comparar, contar y ordenar colecciones de objetos. Gradualmente se introducen los números naturales para atender esta necesidad En esta visión, las aplicaciones, tanto externas como internas, deberían preceder y seguir a la creación de las matemáticas; éstas deben aparecer como una respuesta natural y espontánea de la mente y el genio humano a los problemas que se presentan en el entorno físico, biológico y social en que el hombre vive. Los estudiantes deben ver, por sí mismos, que la axiomatización, la generalización y la abstracción de las matemáticas son necesarias con el fin de comprender los problemas de la naturaleza y la sociedad. A las personas partidarias de esta visión de las matemáticas y su enseñanza les gustaría poder comenzar con algunos problemas de la naturaleza y la sociedad y construir las estructuras fundamentales de las matemáticas a partir de ellas. De este modo se presentaría a los alumnos la estrecha relación entre las matemáticas y sus aplicaciones. La elaboración de un currículo de acuerdo con la concepción constructivista es compleja, porque, además de conocimientos matemáticos, requiere conocimientos sobre otros campos. Las estructuras de las ciencias físicas, biológicas, sociales son relativamente más complejas que las matemáticas y no siempre hay un isomorfismo con las estructuras puramente matemáticas. Hay una abundancia de material disperso sobre aplicaciones de las matemáticas en otras áreas, pero la tarea de selección, secuenciación e integración no es sencilla. 4. ¿Por qué son necesarios los conceptos de longitud y área? ¿Qué tipo de problemas resuelven? ¿Qué otros conceptos, operaciones y propiedades se les asocian? 2. MATEMÁTICAS Y SOCIEDAD Cuando tenemos en cuenta el tipo de matemáticas que queremos enseñar y la forma de llevar a cabo esta enseñanza debemos reflexionar sobre dos fines importantes de esta enseñanza: Que los alumnos lleguen a comprender y a apreciar el papel de las matemáticas en la sociedad, incluyendo sus diferentes campos de aplicación y el modo en que las matemáticas han contribuido a su desarrollo. Que los alumnos lleguen a comprender y a valorar el método matemático, esto es, la clase de preguntas que un uso inteligente de las matemáticas permite responder, las formas básicas de razonamiento y del trabajo matemático, así como su potencia y limitaciones. 2.1. ¿Cómo surgen las matemáticas? Algunas notas históricas La perspectiva histórica muestra claramente que las matemáticas son un conjunto de conocimientos en evolución continua y que en dicha evolución desempeña a menudo un 21 J. D. Godino, C. Batanero y V. Font papel de primer orden la necesidad de resolver determinados problemas prácticos (o internos a las propias matemáticas) y su interrelación con otros conocimientos. Ejemplo: Los orígenes de la estadística son muy antiguos, ya que se han encontrado pruebas de recogida de datos sobre población, bienes y producción en las civilizaciones china (aproximadamente 1000 años a. C.), sumeria y egipcia. Incluso en la Biblia, en el libro de Números aparecen referencias al recuento de los israelitas en edad de servicio militar. No olvidemos que precisamente fue un censo, según el Evangelio, lo que motivó el viaje de José y María a Belén. Los censos propiamente dichos eran ya una institución en el siglo IV a.C. en el imperio romano. Sin embargo, sólo muy recientemente la estadística ha adquirido la categoría de ciencia. En el siglo XVII surge la aritmética política, desde la escuela alemana de Conring. Posteriormente su discípulo Achenwall orienta su trabajo a la recogida y análisis de datos numéricos, con fines específicos y en base a los cuales se hacen estimaciones y conjeturas, es decir se observan ya los elementos básicos del método estadístico. La estadística no es una excepción y, al igual que ella, otras ramas de las matemáticas se han desarrollado como respuesta a problemas de índole diversa: Muchos aspectos de la geometría responden en sus orígenes históricos, a la necesidad de resolver problemas de agricultura y de arquitectura. Los diferentes sistemas de numeración evolucionan paralelamente a la necesidad de buscar notaciones que permitan agilizar los cálculos aritméticos. La teoría de la probabilidad se desarrolla para resolver algunos de los problemas que plantean los juegos de azar. Las matemáticas constituyen el armazón sobre el que se construyen los modelos científicos, toman parte en el proceso de modelización de la realidad, y en muchas ocasiones han servido como medio de validación de estos modelos. Por ejemplo, han sido cálculos matemáticos los que permitieron, mucho antes de que pudiesen ser observados, el descubrimiento de la existencia de los últimos planetas de nuestro sistema solar. Sin embargo, la evolución de las matemáticas no sólo se ha producido por acumulación de conocimientos o de campos de aplicación. Los propios conceptos matemáticos han ido modificando su significado con el transcurso del tiempo, ampliándolo, precisándolo o revisándolo, adquiriendo relevancia o, por el contrario, siendo relegados a segundo plano. Ejemplos El cálculo de probabilidades se ha transformado notablemente, una vez que se incorporaron conceptos de la teoría de conjuntos en la axiomática propuesta por Kolmogorov. Este nuevo enfoque permitió aplicar el análisis matemático a la probabilidad, con el consiguiente avance de la teoría y sus aplicaciones en el último siglo. El cálculo manual de logaritmos y funciones circulares (senos, cosenos, etc.) fue objeto de enseñanza durante muchos años y los escolares dedicaron muchas horas al aprendizaje de algoritmos relacionados con su uso. Hoy las calculadoras y ordenadores producen directamente los valores de estas funciones y el cálculo manual ha desaparecido. El mismo proceso parece seguir actualmente el cálculo de raíces cuadradas. 22 Perspectiva educativa de las matemáticas 2.2. Papel de las matemáticas en la ciencia y tecnología Las aplicaciones matemáticas tienen una fuerte presencia en nuestro entorno. Si queremos que el alumno valore su papel, es importante que los ejemplos y situaciones que mostramos en la clase hagan ver, de la forma más completa posible, el amplio campo de fenómenos que las matemáticas permiten organizar. 2.2.1. Nuestro mundo biológico Dentro del campo biológico, puede hacerse notar al alumno que muchas de las características heredadas en el nacimiento no se pueden prever de antemano: sexo, color de pelo, peso al nacer, etc. Algunos rasgos como la estatura, número de pulsaciones por minuto, recuento de hematíes, etc., dependen incluso del momento en que son medidas. La probabilidad permite describir estas características. En medicina se realizan estudios epidemiológicos de tipo estadístico. Es necesario cuantificar el estado de un paciente (temperatura, pulsaciones, etc.) y seguir su evolución, mediante tablas y gráficos, comparándola con los valores promedios en un sujeto sano. El modo en que se determina el recuento de glóbulos rojos a partir de una muestra de sangre es un ejemplo de situaciones basadas en el razonamiento proporcional, así como en la idea de muestreo. Cuando se hacen predicciones sobre la evolución de la población mundial o sobre la posibilidad de extinción de las ballenas, se están usado modelos matemáticos de crecimiento de poblaciones, de igual forma que cuando se hacen estimaciones de la propagación de una cierta enfermedad o de la esperanza de vida de un individuo. Las formas de la naturaleza nos ofrecen ejemplos de muchos conceptos geométricos, abstraídos con frecuencia de la observación de los mismos. El crecimiento de los alumnos permite plantear actividades de medida y ayudar a los alumnos a diferenciar progresivamente las diferentes magnitudes y a estimar cantidades de las mismas: peso, longitud, etc. 2.2.2. El mundo físico Además del contexto biológico del propio individuo, nos hallamos inmersos en un medio físico. Una necesidad de primer orden es la medida de magnitudes como la temperatura, la velocidad, etc. Por otra pare, las construcciones que nos rodean (edificios, carreteras, plazas, puentes) proporcionan la oportunidad de analizar formas geométricas; su desarrollo ha precisado de cálculos geométricos y estadísticos, uso de funciones y actividades de medición y estimación (longitudes, superficies, volúmenes, tiempos de transporte, de construcción, costes, etc.) ¿Qué mejor fuente de ejemplos sobre fenómenos aleatorios que los meteorológicos?. La duración, intensidad, extensión de las lluvias, tormentas o granizos; las temperaturas máximas y mínimas, la intensidad y dirección del viento son variables aleatorias. También lo son las posibles consecuencias de estos fenómenos: el volumen de agua en un pantano, la magnitud de daños de una riada o granizo son ejemplos en los que se presenta la ocasión del estudio de la estadística y probabilidad. 2.2.3. El mundo social El hombre no vive aislado: vivimos en sociedad; la familia, la escuela, el trabajo, el ocio están llenos de situaciones matemáticas. Podemos cuantificar el número de hijos de la familia, la edad de los padres al contraer matrimonio, el tipo de trabajo, las creencias o 23 J. D. Godino, C. Batanero y V. Font aficiones de los miembros varían de una familia a otra, todo ello puede dar lugar a estudios numéricos o estadísticos. Para desplazarnos de casa a la escuela, o para ir de vacaciones, dependemos del transporte público. Podemos estimar el tiempo o la distancia o el número de viajeros que usarán el autobús. En nuestros ratos de ocio practicamos juegos de azar tales como quinielas o loterías. Acudimos a encuentros deportivos cuyos resultados son inciertos y en los que tendremos que hacer cola para conseguir las entradas. Cuando hacemos una póliza de seguros no sabemos si la cobraremos o por el contrario perderemos el dinero pagado; cuando compramos acciones en bolsa estamos expuestos a la variación en las cotizaciones La estadística y probabilidad se revela como herramienta esencial en estos contextos. 2.2.4. El mundo político El Gobierno, tanto a nivel local como nacional o de organismos internacionales, necesita tomar múltiples decisiones y para ello necesita información. Por este motivo la administración precisa de la elaboración de censos y encuestas diversas. Desde los resultados electorales hasta los censos de población hay muchas estadísticas cuyos resultados afectan las decisiones de gobierno. Los índices de precios al consumo, las tasas de población activa, emigración - inmigración, estadísticas demográficas, producción de los distintos bienes, comercio, etc., de las que diariamente escuchamos sus valores en las noticias, proporcionan ejemplo de razones y proporciones. 2.2.5 El mundo económico La contabilidad nacional y de las empresas, el control y previsión de procesos de producción de bienes y servicios de todo tipo no serían posibles sin el empleo de métodos y modelos matemáticos. En la compleja economía en la que vivimos son indispensables unos conocimientos mínimos de matemáticas financieras. Abrir una cuenta corriente, suscribir un plan de pensiones, obtener un préstamo hipotecario, etc. son ejemplos de operaciones que necesitan este tipo de matemáticas. 2.3. Matemáticas en la vida cotidiana. Cultura matemática Uno de los fines de la educación es formar ciudadanos cultos, pero el concepto de cultura es cambiante y se amplía cada vez más en la sociedad moderna. Cada vez más se reconoce el papel cultural de las matemáticas y la educación matemática también tiene como fin proporcionar esta cultura. El objetivo principal no es convertir a los futuros ciudadanos en “matemáticos aficionados”, tampoco se trata de capacitarlos en cálculos complejos, puesto que los ordenadores hoy día resuelven este problema. Lo que se pretende es proporcionar una cultura con varios componentes interrelacionados: a) Capacidad para interpretar y evaluar críticamente la información matemática y los argumentos apoyados en datos que las personas pueden encontrar en diversos contextos, incluyendo los medios de comunicación, o en su trabajo profesional. b) Capacidad para discutir o comunicar información matemática, cuando sea relevante, y competencia para resolver los problemas matemáticos que encuentre en la vida diaria o en el trabajo profesional. 24 Perspectiva educativa de las matemáticas 5. Las siguientes informaciones han sido tomadas de un mapa, una estación de tren y de la prensa. Indica para cada uno de ellas los conocimientos matemáticos necesarios para una lectura comprensiva a) Se quiere calcular la distancia real entre Valencia y Casablanca con este mapa b) En la estación de Granada se anuncia el siguiente horario: Origen Hora de salida Destino Hora de llegada Tipo de tren Granada 22h 10 min. Barcelona-Sants 9h 50 min. TALGO c) d) El País (2/10/2002) Marca (6/10/2002) 25 J. D. Godino, C. Batanero y V. Font 3. RASGOS CARACTERÍSTICOS DE LAS MATEMÁTICAS El Diseño Curricular Base (DCB) para la Educación Primaria (MEC, 1989) ofrece una visión constructivista-social de las matemáticas. En este apartado incluimos un resumen de este documento, que en conjunto permite apreciar los rasgos característicos de esta visión de las matemáticas. 6. Contrasta tu propia manera de interpretar el conocimiento matemático con la perspectiva sugerida en los siguientes párrafos. ¿Qué implicaciones suponen para la forma de organizar la clase de matemáticas? 3.1. Modelización y resolución de problemas El dar un papel primordial a la resolución de problemas y a la actividad de modelización tiene importantes repercusiones desde el punto de vista educativo. Sería cuanto menos contradictorio con la génesis histórica de las matemáticas, al igual que con sus aplicaciones actuales, presentar las matemáticas a los alumnos como algo cerrado, completo y alejado de la realidad. Debe tenerse en cuenta, por una parte, que determinados conocimientos matemáticos permiten modelizar y resolver problemas de otros campos y por otra, que a menudo estos problemas no estrictamente matemáticos en su origen proporcionan la base intuitiva sobre la que se elaboran nuevos conocimientos matemáticos. 7. En el siguiente problema, ¿cuál es el conocimiento matemático que permite resolverlo? ¿Qué significado intuitivo permite construir sobre dicho conocimiento? Inventa otros problemas sencillos que permitan construir un significado diferenciado para el conocimiento en cuestión. Problema. Unos niños llevan a clase caramelos. Andrés lleva 5, María 8, José 6, Carmen 1 y Daniel no lleva ninguno. ¿Cómo repartir los caramelos de forma equitativa? 8. ¿Qué contenidos matemáticos serían útiles para resolver los siguientes tipos de problemas: Construir a escala la maqueta de un edificio Determinar en forma aproximada la altura de una torre, desde el suelo Calcular el número de lentejas en un paquete de kilo, sin contarlas todas Desde el punto de vista de la enseñanza de las matemáticas, las reflexiones anteriores deben concretarse a la edad y conocimientos de los alumnos. No podemos proponer los mismos problemas a un matemático, a un adulto, a un adolescente o a un niño, porque sus necesidades son diferentes. Hay que tener claro que la realidad de los alumnos incluye su propia percepción del entorno físico y social y componentes imaginadas y lúdicas que despiertan su interés en mayor medida que pueden hacerlo las situaciones reales que interesan al adulto. 26 Perspectiva educativa de las matemáticas En consecuencia, la activación del conocimiento matemático mediante la resolución de problemas reales no se consigue trasvasando de forma mecánica situaciones "reales", aunque sean muy pertinentes y significativas para el adulto, ya que éstas pueden no interesar a los alumnos. 3.2. Razonamiento matemático Razonamiento empírico-inductivo El proceso histórico de construcción de las matemáticas nos muestra la importancia del razonamiento empírico-inductivo que, en muchos casos, desempeña un papel mucho más activo en la elaboración de nuevos conceptos que el razonamiento deductivo. Esta afirmación describe también la forma en que trabajan los matemáticos, quienes no formulan un teorema “a la primera”. Los tanteos previos, los ejemplos y contraejemplos, la solución de un caso particular, la posibilidad de modificar las condiciones iniciales y ver qué sucede, etc., son las auténticas pistas para elaborar proposiciones y teorías. Esta fase intuitiva es la que convence íntimamente al matemático de que el proceso de construcción del conocimiento va por buen camino. La deducción formal suele aparecer casi siempre en una fase posterior. Esta constatación se opone frontalmente a la tendencia, fácilmente observable en algunas propuestas curriculares, a relegar los procedimientos intuitivos a un segundo plano, tendencia que priva a los alumnos del más poderoso instrumento de exploración y construcción del conocimiento matemático. 9. Al disponer puntos en el plano en forma cuadrangular y contar el número total de éstos en cada uno de los cuadrados, obtenemos los llamados "números cuadrados": 1, 4, 9, 16,... * ** *** ** *** *** a) ¿Podrías escribir los primeros 10 números cuadrados? b) Llamaremos Cn al número cuadrado cuya base está formada por n puntos ¿Puedes encontrar una expresión general para Cn ? c) ¿Puedes dar algún tipo de razonamiento que la justifique? 10. Repite el proceso para los "números triangulares": * * * * ** ** ** *** *** **** 11. Analiza el papel del razonamiento empírico-inductivo y deductivo en la resolución de los problemas anteriores 27 J. D. Godino, C. Batanero y V. Font Formalización y abstracción Desde una perspectiva pedagógica -y también epistemológica-, es importante diferenciar el proceso de construcción del conocimiento matemático de las características de dicho conocimiento en un estado avanzado de elaboración. La formalización, precisión y ausencia de ambigüedad del conocimiento matemático debe ser la fase final de un largo proceso de aproximación a la realidad, de construcción de instrumentos intelectuales eficaces para conocerla, analizarla y transformarla. Ciertamente, como ciencia constituida, las matemáticas se caracterizan por su precisión, por su carácter formal y abstracto, por su naturaleza deductiva y por su organización a menudo axiomática. Sin embargo, tanto en la génesis histórica como en su apropiación individual por los alumnos, la construcción del conocimiento matemático es inseparable de la actividad concreta sobre los objetos, de la intuición y de las aproximaciones inductivas activadas por la realización de tareas y la resolución de problemas particulares. La experiencia y comprensión de las nociones, propiedades y relaciones matemáticas a partir de la actividad real es, al mismo tiempo, un paso previo a la formalización y una condición necesaria para interpretar y utilizar correctamente todas las posibilidades que encierra dicha formalización. 3.3. Lenguaje y comunicación Las matemáticas, como el resto de las disciplinas científicas, aglutinan un conjunto de conocimientos con unas características propias y una determinada estructura y organización internas. Lo que confiere un carácter distintivo al conocimiento matemático es su enorme poder como instrumento de comunicación, conciso y sin ambigüedades. Gracias a la amplia utilización de diferentes sistemas de notación simbólica (números, letras, tablas, gráficos, etc,), las matemáticas son útiles para representar de forma precisa informaciones de naturaleza muy diversa, poniendo de relieve algunos aspectos y relaciones no directamente observables y permitiendo anticipar y predecir hechos situaciones o resultados que todavía no se han producido. Ejemplo: Un número par se puede escribir como 2n. Esta expresión es equivalente a (n+1)+(n-1). Pero esta última expresión nos da una nueva información ya que muestra que todo número par es la suma de dos impares consecutivos Sería sin embargo erróneo, o al menos superficial, suponer que esta capacidad del conocimiento matemático para representar, explicar y predecir hechos, situaciones y resultados es simplemente una consecuencia de la utilización de notaciones simbólicas precisas e inequívocas en cuanto a las informaciones que permiten representar. En realidad, si las notaciones simbólicas pueden llegar a desempeñar efectivamente estos papeles es debido a la propia naturaleza del conocimiento matemático que está en su base y al que sirven de soporte. 12. Analiza una página de un libro de matemáticas de primaria. Identifica los diferentes medios de expresión en el texto (términos, símbolos, gráficas, diagramas). Localiza los conceptos implícitos y explícitos a que hacen referencias. ¿Cómo se representan los diferentes conceptos? 28 Perspectiva educativa de las matemáticas 16. ¿Cómo podemos comunicar las matemáticas a alumnos ciegos? ¿Piensas que pueden tener dificultades especiales con alguna parte de las matemáticas debido a su carencia? 3.4. Estructura interna La insistencia sobre la actividad constructiva no supone en ningún caso ignorar que, como cualquier otra disciplina científica, las matemáticas tienen una estructura interna que relaciona y organiza sus diferentes partes. Más aún, en el caso de las matemáticas esta estructura es especialmente rica y significativa. Hay una componente vertical en esta estructura, la que fundamenta unos conceptos en otros, que impone una determinada secuencia temporal en el aprendizaje y que obliga, en ocasiones, a trabajar algunos aspectos con la única finalidad de poder integrar otros que son los que se consideran verdaderamente importantes desde un punto de vista educativo. Sin embargo, interesa destacar una vez más que casi nunca existe un camino único, ni tan siquiera uno claramente mejor, y si lo hay tiene una fundamentación más de tipo pedagógico que epistemológico. Por el contrario, determinadas concepciones sobre la estructura interna de las matemáticas pueden llegar incluso a ser funestas para el aprendizaje de las mismas, como ha puesto claramente de relieve el intento de fundamentar toda la matemática escolar en la teoría de conjuntos. 13. Considera los siguientes conjuntos numéricos: números racionales, números naturales, números enteros, números decimales, números primos. ¿Cómo se relacionan entre sí? 14. ¿Por qué en los diseños curriculares, se contempla una enseñanza cíclica de algunos conceptos? Identifica algunos conceptos que aparezcan cíclicamente en los diferentes niveles de la educación primaria. 3.5. Naturaleza relacional El conocimiento lógico-matemático hunde sus raíces en la capacidad del ser humano para establecer relaciones entre los objetos o situaciones a partir de la actividad que ejerce sobre los mismos y, muy especialmente, en su capacidad para abstraer y tomar en consideración dichas relaciones en detrimento de otras igualmente presentes. Ejemplo En las frases “A es más grande que B”, "A mide tres centímetros más que B”, “B mide tres centímetros menos que A", etc., no expresamos una propiedad de los objetos A y B en sí mismos, sino la relación existente entre una propiedad -el tamaño- que comparten ambos objetos y que precisamente es el resultado de la actividad de compararlos en lo que concierne a esta propiedad en detrimento de otras muchas posibles (color forma, masa, densidad volumen, etc.). Las relaciones más grande que, más pequeño que, tres centímetros más que, tres centímetros menos que, etc. son pues verdaderas construcciones mentales y no una simple lectura de las propiedades de los objetos. Incluso la referencia a los objetos A y B como grande y pequeño supone una actividad de comparación con elementos más difusos, como pueden ser objetos similares con los que se ha tenido alguna experiencia anterior. Este sencillo ejemplo muestra hasta qué punto el conocimiento matemático implica la construcción de relaciones elaboradas a partir de la actividad sobre los objetos. Las 29 J. D. Godino, C. Batanero y V. Font matemáticas son pues más constructivas que deductivas, desde la perspectiva de su elaboración y adquisición. Si desligamos el conocimiento matemático de la actividad constructiva que está en su origen, corremos el peligro de caer en puro formalismo. Perderemos toda su potencialidad como instrumento de representación, explicación y predicción. Otra implicación curricular de la naturaleza relacional de las matemáticas es la existencia de estrategias o procedimientos generales que pueden utilizarse en campos distintos y con propósitos diferentes. Ejemplo, Numerar, contar, ordenar, clasificar, simbolizar, inferir, etc. son herramientas igualmente útiles en geometría y en estadística. Para que los alumnos puedan percibir esta similitud de estrategias y procedimientos y su utilidad desde ópticas distintas, es necesario dedicarles una atención especial seleccionando cuidadosamente los contenidos de la enseñanza. 3.6. Exactitud y aproximación Una característica adicional de las matemáticas, que ha ido haciéndose cada vez más patente a lo largo de su desarrollo histórico, es la dualidad desde la que permite contemplar la realidad. Por un lado la matemática es una “ciencia exacta”, los resultados de una operación, una transformación son unívocos. Por otro, al comparar la modelización matemática de un cierto hecho de la realidad, siempre es aproximada, porque el modelo nunca es exacto a la realidad. Si bien algunos aspectos de esta dualidad aparecen ya en las primeras experiencias matemáticas de los alumnos, otros lo hacen más tarde. Es frecuente que las propuestas curriculares potencien exclusivamente una cara de la moneda: la que se ajusta mejor a la imagen tradicional de las matemáticas como ciencia exacta. Así, por ejemplo, se prefiere la matemática de la certeza (“sí” o “no”, “verdadero” o “falso”) a la de la probabilidad (“es posible que... “, “con un nivel de significación de... “); la de la exactitud (“la diagonal mide √2”, “el área de un círculo es πr2”,...) a la de la estimación (“me equivoco como mucho en una décima”, “la proporción áurea es aproximadamente 5/3”,...). Las matemáticas escolares deben potenciar estos dobles enfoques, y ello no sólo por la riqueza intrínseca que encierran, sino porque los que han sido relegados hasta ahora a un segundo plano tienen una especial incidencia en las aplicaciones actuales de las matemáticas. 15. ¿Es posible medir con exactitud la longitud de una costa? ¿la cantidad de agua embalsada en un pantano? ¿el nivel de ruido ambiental? Pon otros ejemplos en que la medida sólo puede ser aproximada. ¿Qué interés tiene en estos casos un valor aproximado de la medida? 4. CONTENIDOS MATEMÁTICOS: CONCEPTOS, PROCEDIMIENTOS Y ACTITUDES En el Diseño Curricular Base (MEC, 1989) se entiende por contenido escolar tanto los que habitualmente se han considerado contenidos, los de tipo conceptual, como otros que han estado más ausentes de los planes de estudio y que no por ello son menos 30 Perspectiva educativa de las matemáticas importantes: contenidos relativos a procedimientos, y a normas, valores y actitudes. En la escuela los alumnos aprenden de hecho estos tres tipos de contenidos. Todo contenido que se aprende es también susceptible de ser enseñado, y se considera tan necesario planificar la intervención con respecto a los contenidos de tipo conceptual como planificarla con relación a los otros tipos de contenido. En los bloques del Diseño Curricular Base se señalan en tres apartados distintos los tres tipos de contenido. El primero de ellos es el que presenta los conceptos, hechos y principios. Los hechos y conceptos han estado siempre presentes en los programas escolares, no tanto los principios. Por principios se entiende enunciados que describen cómo los cambios que se producen en un objeto o situación se relacionan con los cambios que se producen en otro objeto o situación. El segundo tipo de contenido es el que se refiere a los procedimientos. Un procedimiento es un conjunto de acciones ordenadas, orientadas a la consecución de una meta. Se puede hablar de procedimientos mas o menos generales en función del número de acciones o pasos implicados en su realización, de la estabilidad en el orden de estos pasos y del tipo de meta al que van dirigidos. En los contenidos de procedimientos se indican contenidos que también caben bajo la denominación de "destrezas’’, técnicas’’ o “estrategias’’, ya que todos estos términos aluden a las características señaladas como definitorias de un procedimiento. Sin embargo, pueden diferenciarse en algunos casos en este apartado contenidos que se refieren a procedimientos o destrezas más generales que exigen para su aprendizaje otras técnicas más específicas, relacionadas con contenidos concretos. 16. La suma de números naturales es a la vez un concepto (concepto de suma) y un procedimiento (sumar). Explica cómo se apoyan entre sí el aprendizaje del procedimiento y del concepto en este caso particular. 17. Formula dos objetivos conceptuales y dos procedimentales referentes a la suma de números naturales. El último apartado, que aparece en todos los bloques de contenido, es el que se refiere a los valores, normas y actitudes. La pertinencia o no de incluir este tipo de contenido en el Diseño Curricular puede suscitar alguna duda. Hay personas que consideran que puede ser peligroso estipular unos valores y unas normas y actitudes para todos los alumnos. Desde esta propuesta curricular se pretende, en cambio, que los profesores programen y trabajen estos contenidos tanto como los demás ya que, de hecho, los alumnos aprenden valores, normas y actitudes en la escuela. La única diferencia, que se considera en esta propuesta una ventaja, es que ese aprendizaje no se producirá de una manera no planificada, formando parte del currículo oculto, sino que la escuela intervendrá intencionalmente favoreciendo las situaciones de enseñanza que aseguraran el desarrollo de los valores, normas y actitudes que, a partir de las cuatro fuentes del currículo, pero especialmente de la fuente sociológica, se consideren oportunas. 18. ¿Cómo crees que se forman las actitudes negativas hacia las matemáticas? ¿Cómo se ponen de manifiesto? La distinción entre contenidos conceptuales, procedimentales y actitudinales es, en primer lugar y sobre todo, de naturaleza pedagógica. Es decir, llama la atención sobre la 31 J. D. Godino, C. Batanero y V. Font conveniencia de adoptar un enfoque determinado en la manera de trabajar los contenidos seleccionados. Esta es la razón por la cual, en ocasiones, un mismo contenido aparece repetido en las tres categorías: la repetición en este caso traduce la idea pedagógica de que el contenido en cuestión debe ser abordado convergentemente desde una perspectiva conceptual, procedimental y actitudinal. En otras ocasiones, sin embargo, un determinado contenido aparece únicamente en una u otra de las tres categorías, con ello se sugiere que dicho contenido, por su naturaleza y por la intención educativa propia de la etapa, debe ser abordado con un enfoque prioritariamente conceptual, procedimental o actitudinal. Estos tres tipos de contenido son igualmente importantes ya que todos ellos colaboran en igual medida a la adquisición de las capacidades señaladas en los objetivos generales del área. El orden de presentación de los apartados referidos a los tres tipos de contenido no supone ningún tipo de prioridad entre ellos. Los diferentes tipos de contenido no deben trabajarse por separado en las actividades de enseñanza y aprendizaje. No tiene sentido programar actividades de enseñanza y aprendizaje ni de evaluación distintas para cada uno de ellos, ya que será el trabajo conjunto lo que permitirá desarrollar las capacidades de los objetivos generales. Sólo en circunstancias excepcionales, cuando así lo aconsejen las características de los alumnos o alguno de los elementos que intervienen en la definición del Proyecto Curricular, puede ser aconsejable enfocar de manera específica el trabajo sobre uno u otro tipo de contenido. 5. UN MODELO DE ANÁLISIS DE LA ACTIVIDAD MATEMÁTICA La descripción de los contenidos matemáticos en el Diseño Curricular Base puede ser adecuada para una planificación global del currículo, pero consideramos que es insuficiente para describir la actividad de estudio de las matemáticas. Por ejemplo, para el bloque temático de "Números y operaciones", los contenidos conceptuales (designados como conceptos) que se mencionan son: 1. Números naturales, fraccionarios y decimales: 2. Sistema de Numeración Decimal: 3. Las operaciones de suma, resta, multiplicación y división: 4. Reglas de uso de la calculadora Y como procedimientos se mencionan, entre otros, 1. Utilización de diferentes estrategias para contar de manera exacta y aproximada. 2. Explicación oral del proceso seguido en la realización de cálculos y en la resolución de problemas numéricos. Este listado de "conceptos y procedimientos" matemáticos es insuficiente para planificar y gestionar el proceso de enseñanza y aprendizaje de los "números y operaciones" en los distintos niveles de educación primaria. Para poder identificar las dificultades que los alumnos tienen en el estudio de las matemáticas necesitamos reflexionar sobre los tipos de objetos que se ponen en juego en la actividad matemática y las relaciones que se establecen entre los mismos. Ejemplificamos a continuación el modelo de análisis que proponemos para el caso del estudio de la suma y resta en un libro de texto. 32 Perspectiva educativa de las matemáticas 5.1. Significados de la suma y la resta en un libro de texto En lo que sigue analizaremos un fragmento de una lección sobre la "suma y la resta" tomada de un libro de matemáticas de 5º de matemáticas (Figuras 1.1, 1.2 y 1.3). Mostraremos2 que, dentro de una "etiqueta" como la “suma y la resta", aparecen, además de los conceptos y procedimientos, los problemas, lenguaje y argumentos de una manera articulada y sistemática. Cada uno de estos objetos requiere una atención especial en los procesos de enseñanza y aprendizaje. A B Figura 1.1: La suma y la resta Observa la parte A de la figura 1.1. 2 Se trata de un modelo epistemológico de las matemáticas que asume los supuestos básicos del constructivismo social y proporciona elementos para un análisis detallado de la actividad matemática. 33 J. D. Godino, C. Batanero y V. Font 19. Describe la actividad que llevan a cabo los niños en la supuesta clase de matemáticas. ¿A qué juegan? ¿Cómo anotan los puntos obtenidos en la competición?. ¿Qué tipo de representaciones matemáticas usan? Observa la parte B 20. ¿Qué preguntas deben resolver los alumnos que usan el texto? ¿A qué situación se refieren? ¿Qué conceptos matemáticos y procedimientos debe aplicar el alumno para resolverlas? Aunque las tareas parecen sencillas, el alumno posiblemente necesite una actividad de exploración, debe recordar sus conocimientos previos (seguramente no es la primera vez que han encontrado este tipo de problemas) y ser capaz de aplicar el algoritmo de la suma y la resta. Se espera también que el alumno justifique sus soluciones, usando los conocimientos compartidos con el profesor y el resto de la clase. El contenido "la suma y la resta", no es simple. En realidad con esta expresión se hace referencia a una serie compleja de prácticas, que mostraremos con detalle a continuación con el análisis de este libro de texto. El alumno ha de ser capaz de realizar dichas prácticas para resolver los problemas aditivos que se le proponen. Observa la parte C de la figura 1.2 21. ¿Qué otro nuevo problema se propone? Observa la parte D de la figura 1.2 El autor usa el problema para explicar el significado de la suma y la operación de sumar números naturales. Introduce para ello dos formas diferentes de representar los números (sumandos): notación simbólica decimal, resaltando en columnas las unidades, decenas y centenas; y una representación lineal de los tres sumandos y el total, o suma. Da dos definiciones distintas de la suma: "sumar es reunir, juntar, añadir, aumentar, incrementar,..." "resultado de sumar números" 34 Perspectiva educativa de las matemáticas C D E Figura 1.2: La suma. Significados Describe la manera de realizar la suma de los números en el caso general: "se colocan los sumandos uno debajo del otro haciendo coincidir en columna las unidades con las unidades, las decenas con las decenas, etc." 22. Analiza la explicación que el profesor da de la suma en la parte D e identifica los siguientes tipos de "objetos matemáticos" que usan: - Términos, expresiones y gráficos - Conceptos (definiciones) - Procedimientos (maneras de realizar las operaciones) 35 J. D. Godino, C. Batanero y V. Font Algunos posibles conflictos En la explicación de la suma (parte D) no se da ninguna justificación o argumentación de por qué la operación de sumar se hace de esta manera. El niño que usa el libro debe interpretar lo escrito, lo que puede no estar exento de dificultades (conflictos de significados): - Se dice que sumar es reunir,..., luego para sumar se debería hacer esa reunión, o sea la unión de los conjuntos disjuntos involucrados. Sin embargo, puede que los alumnos del colegio no se “reúnan físicamente”. La operación de sumar no se refiere a la unión de conjuntos, sino a la suma de números que expresan los cardinales de tales conjuntos. - La descripción de la operación de sumar se hace en lenguaje ordinario y en forma general. El niño debe ponerla en correspondencia con los símbolos numéricos del ejemplo y con la gráfica de la recta numérica. Puede que el niño no vea clara la correspondencia entre los números naturales y un segmento (continuo) de la recta. - La representación mediante la recta numérica sugiere interpretar la suma como "seguir contando". Esta es una técnica completamente diferente, que no se ha descrito en el libro. Observa la parte E de la figura 1.2 23. ¿Qué nuevas tareas se incluyen? ¿En qué se diferencian? ¿Qué finalidad tiene cada una de ellas? Observa la figura 1.3 24. ¿Qué nuevas propiedades se estudian de la suma? ¿Cómo se justifican? ¿Cuál es la finalidad de los nuevos problemas presentados? 36 Perspectiva educativa de las matemáticas F G H Figura 1.3: Las propiedades de la suma 5.2. Tipos de objetos que intervienen en la actividad matemática En las actividades anteriores habrás observado cómo, al describir con detalle la actividad matemática, encontramos los siguientes seis tipos de objetos: - Problemas y situaciones (cuestiones, ejercicios, etc.) - Lenguaje (términos, expresiones, gráficos, etc.) - Acciones (, técnicas, algoritmos, etc.) - Conceptos (definiciones o reglas de uso) - Propiedades de los conceptos y acciones 37 J. D. Godino, C. Batanero y V. Font - Argumentaciones (inductivas, deductivas, etc.) Estos objetos están relacionados unos con otros. El lenguaje es imprescindible para describir los problemas, acciones, conceptos, propiedades y argumentaciones. Los conceptos y propiedades deben ser recordados al realizar las tareas, las argumentaciones sirven para justificar las propiedades. 5.3. Procesos matemáticos En la actividad matemática aparecen también una serie de procesos que se articulan en su estudio, cuando los estudiantes interaccionan con las situaciones - problemas, bajo la dirección y apoyo del profesor. Los Principios y Estándares 2000 del NCTM resaltan la importancia de los procesos matemáticos, en la forma que resumimos a continuación. 1. Resolución de problemas (que implica exploración de posibles soluciones, modelización de la realidad, desarrollo de estrategias y aplicación de técnicas). 2. Representación (uso de recursos verbales, simbólicos y gráficos, traducción y conversión entre los mismos). 3. Comunicación (diálogo y discusión con los compañeros y el profesor). 4. Justificación (con distintos tipos de argumentaciones inductivas, deductivas, etc.). 5. Conexión (establecimiento de relaciones entre distintos objetos matemáticos). Nosotros, además añadimos el siguiente proceso: 6. Institucionalización (fijación de reglas y convenios en el grupo de alumnos, de acuerdo con el profesor) Estos procesos se deben articular a lo largo de la enseñanza de los contenidos matemáticos organizando tipos de situaciones didácticas que los tengan en cuenta. A continuación los describimos brevemente. 1. Resolución de problemas La importancia que se da a resolución de problemas en los currículos actuales es el resultado de un punto de vista sobre las matemáticas que considera que su esencia es precisamente la resolución de problemas. Muchos autores han ayudado a desarrollar este punto de vista como, por ejemplo, Lakatos3. Entre estos autores destaca Polya. Para Polya4, la resolución de un problema consiste, a grandes rasgos, en cuatro fases: 1) Comprender el problema, 2) Concebir un plan, 3) Ejecutar el plan y 4) Examinar la solución obtenida. Cada fase se acompaña de una serie de preguntas cuya intención clara es actuar como guía para la acción. Los trabajos de Polya, se pueden considerar como un intento de describir la manera de actuar de un resolutor ideal. Ahora bien ¿Por qué es tan difícil, para la mayoría de los humanos, la resolución de problemas en matemáticas? Los trabajos de Schoenfeld5 tienen por objetivo explicar la conducta real de los resolutores reales de problemas. 3 En su libro "Pruebas y refutaciones" Lakatos presenta un choque de opiniones, razonamientos y refutaciones entre un profesor y sus alumnos. En lugar de presentar el producto de la actividad matemática, presenta el desarrollo de la actividad matemática a partir de un problema y una conjetura (1978, Alianza editorial) 4 Polya, G. (1965). ¿Cómo plantear y resolver problema?. México: Trillas 5 Schoenfeld, A. (1985). Mathematical Problem Solving. Academic Press, New York 38 Perspectiva educativa de las matemáticas Schoenfeld propone un marco con cuatro componentes que sirva para el análisis de la complejidad del comportamiento en la resolución de problemas: 1) Recursos cognitivos: conjunto de hechos y procedimientos a disposición del resolutor, 2) Heurísticas: reglas para progresar en situaciones difíciles, 3) Control: aquello que permite un uso eficiente de los recursos disponibles y 4) Sistema de creencias: nuestra perspectiva con respecto a la naturaleza de la matemática y cómo trabajar en ella. La resolución de problemas no es sólo uno de los fines de la enseñanza de las matemáticas, sino el medio esencial para lograr el aprendizaje. Los estudiantes deberán tener frecuentes oportunidades de plantear, explorar y resolver problemas que requieran un esfuerzo significativo. Mediante la resolución de problemas matemáticos, los estudiantes deberán adquirir modos de pensamiento adecuados, hábitos de persistencia, curiosidad y confianza ante situaciones no familiares que les serán útiles fuera de la clase de matemáticas. Incluso en la vida diaria y profesional es importante ser un buen resolutor de problemas. La resolución de problemas es una parte integral de cualquier aprendizaje matemático, por lo que consideramos que no debería ser considerado como una parte aislada del currículo matemático. En consecuencia, la resolución de problemas debe estar articulada dentro del proceso de estudio de los distintos bloques de contenido matemático. Los contextos de los problemas pueden referirse tanto a las experiencias familiares de los estudiantes así como aplicaciones a otras áreas. Desde este punto de vista, los problemas aparecen primero para la construcción de los objetos matemáticos y después para su aplicación a diferentes contextos. 25. Analiza cómo se usa la resolución de problemas en el texto anteriormente analizado. 26. Indica algunas situaciones de la vida ordinaria en que sea precisa la resolución de problemas. 2. Representación con diversos lenguajes La manera de expresar nuestras ideas influye en cómo las personas pueden comprender y usar dichas ideas. Por ejemplo, es diferente la comprensión que tenemos de los números naturales cuando los representamos mediante dígitos o mediante la recta numérica. Algunos autores como Wittgenstein piensan incluso, que sin el lenguaje no hay tales ideas, ya que éstas no son otra cosa que reglas gramaticales de los lenguajes que usamos para describir nuestro mundo. Ejemplo Sin la palabra “triángulo” (u otra que tenga los mismos usos) no existiría la idea de triángulo. Esta idea no es más que una regla para describir un cierto tipo de objetos (con tres vértices, con tres lados, suma de ángulos igual a 180 grados, etc.). El lenguaje matemático tiene además una doble función: representacional: nos permite designar objetos abstractos que no podemos percibir; instrumental: como herramienta para hacer el trabajo matemático. El valor instrumental puede ser muy diferente según se trate de palabras, símbolos, o gráficas. En consecuencia, el estudio de los diversos sistemas de representación para 39 J. D. Godino, C. Batanero y V. Font un mismo contenido matemático es necesario para la comprensión global del mismo. El lenguaje es esencial para: comunicar las interpretaciones y soluciones de los problemas a los compañeros o el profesor; reconocer las conexiones entre conceptos relacionados; aplicar las matemáticas a problemas de la vida real mediante la modelización. para utilizar los nuevos recursos tecnológicos que se pueden usar en el trabajo matemático. 27. Haz una lista de las posibles representaciones a) de un triángulo, b) de un número, y c) de un conjunto de datos estadísticos. ¿Qué características se visualizan mejor en cada una de ellas? 3. Comunicación La comunicación de nuestras ideas a otros es una parte esencial de las matemáticas y, por tanto, de su estudio. Por medio de la formulación, sea esta oral o escrita , y la comunicación, las ideas pasan a ser objetos de reflexión, discusión, revisión y perfeccionamiento. El proceso de comunicación ayuda a construir significado y permanencia para las ideas y permite hacerlas públicas. Cuando pedimos a los estudiantes que piensen y razonen sobre las matemáticas y que comuniquen los resultados de su pensamiento a otras personas, de manera oral o escrita, aprenden a ser claros y convincentes. Cuando los estudiantes escuchan las explicaciones de otros compañeros tienen oportunidades de desarrollar sus propias interpretaciones. Los diálogos mediante los que las ideas matemáticas se exploran desde distintas perspectivas ayudan a los participantes a ajustar su pensamiento y hacer conexiones. Cuando los alumnos participan en discusiones en las que tienen que justificar sus soluciones -especialmente cuando hay desacuerdos - mejoran su comprensión matemática a medida que tienen que convencer a sus compañeros de puntos de vista diferentes. Esa actividad también ayuda a los estudiantes a desarrollar un lenguaje para expresar ideas matemáticas y les hace conscientes de la necesidad de usar un lenguaje preciso. Los alumnos que tienen oportunidades, estímulo y apoyo para hablar, escribir, leer y escuchar en las clases de matemáticas reciben un doble beneficio: mejoran su aprendizaje matemático al tiempo que aprenden a comunicarse de manera matemática. 4. Justificación El razonamiento matemático y la demostración son componentes esenciales del conocimiento matemático entendido éste de la manera integral que proponemos. Mediante la exploración de fenómenos, la formulación de conjeturas matemáticas, la justificación de resultados, sobre distintos contenidos matemáticos y diferentes niveles de complejidad los alumnos apreciarán que las matemáticas tienen sentido. Partiendo de las destrezas de razonamiento con las que los niños entran en la escuela, los maestros pueden ayudarles a que aprendan lo que supone el razonamiento matemático. El razonamiento y la demostración matemática no se pueden enseñar impartiendo 40 Perspectiva educativa de las matemáticas un tema sobre lógica, o unas demostraciones aisladas sobre temas como la geometría. Este componente del conocimiento matemático deberá estar presente en la experiencia matemática de los estudiantes desde los niveles de educación infantil. Razonar de manera matemática es un hábito, y como todos los hábitos se debe desarrollar mediante un uso consistente en muchos contextos. 5. Conexiones matemáticas Cuando los estudiantes pueden conectar las ideas matemáticas entre sí, con las aplicaciones a otras áreas, y en contextos de su propio interés, la comprensión matemática es más profunda y duradera. Podemos postular que sin conexión no hay comprensión, o ésta comprensión es débil y deficiente. Mediante una instrucción que enfatiza las interrelaciones entre las ideas matemáticas, los estudiantes no sólo aprenden matemáticas, sino que también aprecian la utilidad de las matemáticas. Las matemáticas no se deben ver como una colección de partes separadas, aunque con frecuencia se divide en temas que se presentan desconectados. Las matemáticas son un campo integrado de estudio, por lo que los matemáticos profesionales prefieren referirse a su disciplina en singular: la Matemática. Concebir las matemáticas como un todo resalta la necesidad de estudiar y pensar sobre las conexiones internas de la disciplina, tanto en un nivel particular del currículo como entre distintos niveles. Para enfatizar las conexiones, los profesores deben conocer las necesidades de sus estudiantes, así como las matemáticas que estudiaron en los niveles anteriores, y las que estudiarán en los siguientes. 28. Estudia las conexiones del concepto de polígono con otras ideas matemáticas. Elabora un mapa conceptual que ponga de relieve estas relaciones. 6. Institucionalización Las matemáticas constituyen un sistema conceptual lógicamente organizado. Una vez que un objeto matemático ha sido aceptado como parte de dicho sistema puede ser considerado como una realidad cultural, fijada mediante el lenguaje, y un componente de la estructura lógica global. En el proceso de estudio matemático habrá pues una fase en la que se fija una "manera de decir", públicamente compartida, que el profesor deberá poner a disposición de los alumnos en un momento determinado. Los profesores en formación de los distintos niveles educativos deberán conocer la importancia de los seis procesos de índole matemática que hemos descrito, y tenerlos en cuenta en su trabajo como directores y ayudantes de los procesos de estudio matemático de los niños. 29. A partir de la observación de una sesión de clase de matemáticas identifica los diferentes procesos que se ponen en juego entre los descritos anteriormente. 41 J. D. Godino, C. Batanero y V. Font 5.4. Conocimientos personales e institucionales En una clase, los conocimientos de cada alumno en un momento dado son muy variados. Hablamos de conocimiento personal de cada alumno para diferenciarlo del conocimiento fijado por el profesor, por el libro de texto o en un currículo (conocimiento institucional). Ejemplo, El Diseño Curricular Base (MEC) fija unos contenidos para la suma y la resta que se concretan en la programación que hace cada profesor en su clase (conocimiento institucional). Un niño puede finalizar un nivel escolar sin haber alcanzado plenamente todos los objetivos fijados. Podemos describir metafóricamente el aprendizaje como "acoplamiento progresivo" entre significados personales e institucionales en una clase. Es importante diferenciar las facetas personal e institucional de los conocimientos matemáticos para poder describir y explicar las interacciones entre el profesor y los alumnos en los procesos de enseñanza y aprendizaje. 6. TRANSPOSICIÓN DIDÁCTICA Cuando queremos enseñar un cierto contenido matemático, tal como los números racionales, hay que adaptarlo a la edad y conocimientos de los alumnos, con lo cual hay que simplificarlo, buscar ejemplos asequibles a los alumnos, restringir algunas propiedades, usar un lenguaje y símbolos más sencillos que los habitualmente usados por el matemático profesional. Ejemplo En Matemáticas, se define la suma de dos números naturales a y b como “el cardinal de la unión de dos conjuntos disjuntos que tienen como cardinales a y b respectivamente. Esta definición es demasiado complicada para el alumno de primaria. Se suele sustituir por ideas tales como “reunir”, “juntar”, “añadir”. Se proporciona al niño regletas, colecciones de objetos y otros materiales para que pueda experimentar con los mismos. Es claro que el significado es muy diferente en los dos casos. La expresión "transposición didáctica"6 hace referencia al cambio que el conocimiento matemático sufre para ser adaptado como objeto de enseñanza. Como consecuencia se producen diferencias en el significado de los objetos matemáticos entre la "institución matemática" y las instituciones escolares. Por ejemplo, los usos y propiedades de las nociones matemáticas tratadas en la enseñanza son necesariamente restringidos. El problema didáctico se presenta cuando, en forma innecesaria, se muestra un significado sesgado o incorrecto. 6 Chevallard, Y. (1985). La transposition didactique. Grenoble: La Pensée Sauvage. 42 Perspectiva educativa de las matemáticas C: Seminario didáctico 1. ACTITUDES HACIA LAS MATEMÁTICAS (1) Cumplimentar el cuestionario adjunto de "Actitudes hacia las matemáticas". Presentar y discutir los resultados en la clase. Cuestionario de actitudes7: Señalar el grado de acuerdo o desacuerdo respecto de las siguientes afirmaciones sobre las matemáticas, según el siguiente convenio: 1: Totalmente en desacuerdo; 2: En desacuerdo; 3: Neutral (ni de acuerdo ni en desacuerdo); 4: De acuerdo; 5: Totalmente de acuerdo: 1. Considero las matemáticas como una materia muy necesaria en mis estudios. 1 2 3 4 5 2. La asignatura de matemáticas se me da bastante mal. 1 2 3 4 5 3. Estudiar o trabajar con las matemáticas no me asusta en absoluto 1 2 3 4 5 4. Utilizar las matemáticas es una diversión para mí. 1 2 3 4 5 5. Las matemáticas son demasiado teóricas para que puedan servirme de algo. 1 2 3 4 5 6. Quiero llegar a tener un conocimiento más profundo de las matemáticas.. 1 2 3 4 5 7. Las matemáticas son una de las asignaturas que más temo. 1 2 3 4 5 8. Tengo confianza en mí cuando me enfrento a un problema de matemáticas. 1 2 3 4 5 9. Me divierte el hablar con otros de matemáticas. 1 2 3 4 5 7 Auzmendi, E. (1992). Las actitudes hacia la matemática-estadística en las enseñanzas medias y universitarias. Bilbao: Mensajero. 43 J. D. Godino, C. Batanero y V. Font 10. Las matemáticas pueden ser útiles para el que decida realizar una carrer