Lecture Notes on Polynomial Parametrization - PDF

Summary

These lecture notes delve into polynomial parametrization, discussing the implicitization problem and associated theorems. The material covers concepts such as affine varieties, Zariski closure, and Grobner bases. Examples are used to illustrate mathematical concepts.

Full Transcript

```markdown ## (Lecture 6) ### 44 * We start with a **polynomial parametrization**: $x_1 = f_1(t_1,..., t_m)$ $\vdots$ $x_n = f_n(t_1,..., t_m)$ where $f_1,..., f_n \in \mathbb{K}[t_1,..., t_m]$. $p_0 = (1-t)^2$ $p_1 = 2t(1-t)$ $p_2 = t^2$ * We can think of th...

```markdown ## (Lecture 6) ### 44 * We start with a **polynomial parametrization**: $x_1 = f_1(t_1,..., t_m)$ $\vdots$ $x_n = f_n(t_1,..., t_m)$ where $f_1,..., f_n \in \mathbb{K}[t_1,..., t_m]$. $p_0 = (1-t)^2$ $p_1 = 2t(1-t)$ $p_2 = t^2$ * We can think of this geometrically as the function $\varphi: \mathbb{K}^m \rightarrow \mathbb{K}^n$ $\rho:(t_1,..., t_m) \mapsto (f_1(t_1,..., t_m),..., f_n(t_1,..., t_m))$. * So $\varphi(\mathbb{K}^m) \subset \mathbb{K}^n$ is the subset of $\mathbb{K}^n$ parametrized by the equations. * **NOTE** $\varphi(\mathbb{K}^m)$ need not be an affine variety! So a solution to the implicitization problem concretely means finding the smallest affine variety containing $\varphi(\mathbb{K}^m)$. * **Implicitization Problem (formally)** Given a parametrization as in $f_1,..., F_s$ such that. find $V(F_1,..., F_s)$ is the smallest affine variety containing $\varphi(\mathbb{K}^m)$. * Note that the equations define a variety $V = V(x_1 - f_1,..., x_n - f_n) \subset \mathbb{K}^{n+m}$ * So we can relate implicitization to elimination as follows: ### 45 * Points in V can be written as $(t_1,..., t_m, f_1(t_1,..., t_m),..., f_n(t_1,..., t_m))$ $\Rightarrow V \text{ is the graph of } \varphi$ * **Example**: $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ $t \mapsto t^2 = x$ $(t, x) \in V(\varphi - x)$ * Also have functions: $\iota: \mathbb{K}^m \rightarrow \mathbb{K}^{n+m} $ $\iota: (t_1,..., t_m) \mapsto (t_1,..., t_m, f_1(t_1,..., t_m),..., f_n(t_1,..., t_m))$ * and $\pi_m: \mathbb{K}^{n+m} \rightarrow \mathbb{K}^n$ $\pi_m: (t_1,..., t_m, x_1,..., x_n) \mapsto (x_1,..., x_n)$. * Have the diagram $\mathbb{K}^m \overset{\iota}{\longrightarrow} \mathbb{K}^{n+m}$ $\qquad \searrow \swarrow \pi_m$ $\qquad \qquad \mathbb{K}^n$ * So $\varphi = \pi_m \iota$ * **Exercise** $\iota(\mathbb{K}^m) = V$. $\Rightarrow \varphi(\mathbb{K}^m) = \pi_m (\iota (\mathbb{K}^m)) = \pi_m (V)$ i.e. the image of the parametrization equals the projection of its graph!. $\Rightarrow$ can use the elimination and closure theorems to solve the implicitization problem! ### 46 **Theorem (Polynomial Implicitization)** Let $\mathbb{K}$ be an infinite field, $\varphi: \mathbb{K}^m \rightarrow \mathbb{K}^n$ a polynomial parametrization as in , and define the ideal $I = \langle x_1 - f_1, ..., x_n - f_n \rangle \subset \mathbb{K}[t_1, ..., t_m, x_1, ..., x_n]$. Then $V(I_m)$ is the Zariski closure of $\varphi(\mathbb{K}^m)$ in $\mathbb{K}^n$. **Proof:** We have seen that $\overline{\varphi(\mathbb{K}^m)} = V(I(\varphi(\mathbb{K}^m)))$ is the smallest affine variety containing $\varphi(\mathbb{K}^m)$. * So we want to show that the smallest affine variety containing $\varphi(\mathbb{K}^m)$ is $V(I_m)$. * Start with $V = V(I) \subset \mathbb{K}^{n+m}$ - the graph of $\varphi$. * Assume first that $\mathbb{Z} = \mathbb{C}$. * By we have $\varphi(\mathbb{K}^m) = \pi_m (V)$. * By Closure Theorem, we have $V(I_m)$ is the smallest affine variety containing $\varphi(\mathbb{K}^m)$. - done we $\mathbb{Z} = \mathbb{C}$ * Let $\mathbb{K}$ be a subfield of $\mathbb{C}$. (i.e. a subset of $\mathbb{C}$ that forms a field under the same multiplication & addition). $\Rightarrow \mathbb{K}$ contains $\mathbb{Z}$ (Exercise!) ... and $\mathbb{Q}$! (Why?) $\Rightarrow \mathbb{K}$ infinite. * $\mathbb{K}$ could be non-algebraically closed... can't use closure theorem directly... $V_{\mathbb{Z}}(I_m)$ is variety we get in $\mathbb{K}^n$. $V_{\mathbb{C}}(I_m)$ is variety we get in $\mathbb{C}^n$ $\rightarrow$ Going to larger field doesn't change elimination ideal $I_m$ since the algorithm for computing $I_m$ is not affected by changing from $\mathbb{Z}$ to $\mathbb{C}$. ### 47 * Need to prove $V_{\mathbb{Z}}(I_m)$ is smallest variety in $\mathbb{K}^n$ containing $\varphi(\mathbb{Z}^m)$. *. By and our Lemma, we have $\varphi(\mathbb{K}^m) = \pi_m (V(\mathbb{K}) \subset V_{\mathbb{K}}(I_m)$. Where $V_{\mathbb{K}} = V(x_i - f_1, ..., x_n - f_n)$ (over $\mathbb{K}^{n+m})$ Let $Z_k = V_k (g_1,..., g_s) \subset \mathbb{K}^n$ be a variety in $\mathbb{K}^n$ such that $\varphi(\mathbb{K}^m) \subset Z_k$. * Since $g_i (a) = 0 \; \forall a \in Z_k$ then $g_i (a) = 0 \; \forall a \in \varphi(\mathbb{K}^m)$ $\Rightarrow g_i \circ \varphi$ vanishes on all of $\varphi(\mathbb{K}^m)$ and $g_i \circ \varphi \in \mathbb{Z}[t_1,..., t_m]$. $\Rightarrow g_i \circ \varphi (a) = 0 \; \forall a \in \mathbb{K}^m$ * This mcans $g_i \circ \varphi$ vanishes on all of $\mathbb{K}^m$. Since $\mathbb{K}$ infinite $\Rightarrow g_i \circ \varphi$ is 0-polynomial $\forall i$. $\Rightarrow Z_G = V_k (g_1,..., g_s)$ a variety in $\mathbb{K}^n$ containing $\varphi (\mathbb{K}^m)$. $\Rightarrow V_{\mathbb{C}} (I_m) \subset Z_{\mathbb{C}} \subset \mathbb{C}^n$ (by case $\mathbb{Z} = \mathbb{C}$). * By- considering only solutions in $\mathbb{K}^n$ it follows $V_{\mathbb{Z}} (I_m) \subset Z_{\mathbb{K}}$. proving the result for $\mathbb{Z} \subset \mathbb{C}$. * If $\mathbb{Z}$ not a subfield of $\mathbb{C}$, one can prove there is an algebraically closed field containing $\mathbb{Z}$, and use the same arguments. ### 48 * We get the following algorithm for solving the proliferation problem for polynomial parametrizations: * **Algorithm**: Parametrization $x_i = f_i (t_1, ..., t_m)$ for $i = 1, ..., n$ and $f_1, ..., f_n \in \mathbb{K}[t_1, ..., t_m]$. Define $I = <x_i - f_1, ..., x_n - f_n> \in \mathbb{K}[t_1, ..., t_m, x_1, ..., x_n]$. * Compute Grobner basis $G$ for $I$ with. lexicographic term order. where every $t_j$ is greater than every $x_i$ * Take $G \cap \mathbb{Z}[x_{i}, ..., x_{n}]$ * **Example** $\varphi : \mathbb{R} \rightarrow \mathbb{R}^3$. $\varphi : t \mapsto ((1-t)^2, 2t(1-t), t^2)$ * Compute $I = <p_0 - (1-t)^2, p_1 - 2t(1-t), p_2 - t^2>$ and G.B. * $G = \{p_1^2 + 4p_0p_2 + 4p_2^2 - 4p_2, p_0 + p_1 + p_2 - 1, 2t- P-22\}$. * $ \overline{\varphi(\mathbb{R})} = V (p_1^2 + 4p_0p_2 + 4p_2^2 - 4p_2, p_0 + p_1 + p_2 - 1)$ * $<p_1^2 + 4p_0p_2 + 4p_2^2 - 4p_2, p_0 + p_1 + p_2 - 1>=<p_1^2 - 4p_0p_2 + 4p_2^2 , p_0 + p_1 + p_2 - 1>.$ $\overline{\varphi(\mathbb{R})} = V (p_1^2 - 4p_0p_2, p_0 + p_1 + p_2 - 1)$. $\Rightarrow$ $\overline{M} = \overline{\varphi((0,1)} = \varphi(\mathbb{R}) = V (p_1^2 - 4p_0p_2 , p_0 + p_1 + p_2 - 1)$. ((skipping details...)) $\Rightarrow$ Semialgebraic description of the binomial model for $n = 2$ is $M = V (p_1^2 - 4p_0p_2) \cap \Delta_0^2$ ### 49 **Example** (Concentration Models). $\Xi = [\Xi_1, \Xi_2, \Xi_3]^T \sim N(0, \Sigma)$ $\Sigma^{-1} = K = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix} = concentration \\ matrix$ $K \in S^{3x3} = 3x3 \; real \; symmetric \; matrices.$. $K \in PD_3 = 3x3 \; positive \; definite \; matrices$. $\Xi = \{ a\begin{bmatrix} 1 & a & 1 \\ a & 1 & a \\ 1 & a & 1 \end{bmatrix}+ b \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}:a, b \in \mathbb{R}\} \subset S^3$ $M= \{\varepsilon \sim N(0, \varepsilon) :\Sigma^{-1} \in \Xi \cap PD_3\}$ a linear concentration model. $M = Im \varphi (\Xi \cap PD_3) where$ $\varphi: S^3 - \rightarrow S^3$ $K \mapsto K^{-1}$ $\varphi (K) = {\sigma_{ij} = (-1)^{i+j}\tfrac{|K^{[3]}\backslash\{j\},[3]\backslash\{i\}|}{|K|}: i,j \in [3]}$ rational function in parameters a,b,... We need to extend our theorem to cover models with a rational parametrization. ### 50 * The may is then a rational map because each $\sigma_{ij}$ coordinate is specified by a rational function of the concentration parameters (i.e. a quotient of polynomials). * To haulle our statistical models we need to extend our solution of the implicitization problem to rational parametrizations. * $\textit{See example}$ To see the subtleties that arise lets consider an easier example of rational parametrization: $\varphi: \mathbb{R}^2 - \rightarrow \mathbb{R}^3$ $\varphi: (u,v) \rightarrow (\frac{u^2}{v}, \frac{v^2}{u}, u) = (x,y,z)$. * Note if $(x,y,z) \in Im (\varphi)$ then $x^2y - z^3 = 0$. * Try to apply polynomial implicitization by clearing denominators: $I = \langle vx - u^2, uy - v^2, z - u \rangle \subset \mathbb{Z} [u,v,x,y,z]$. *Exercise* $I_2 = \langle I \cap \mathbb{Z}[x,y,z] = x^2y - z^3 \rangle$. $\Rightarrow$ $V(I_2) = V (x^2y - z^3) \cup V (z)$ (see previous lemma!) $\Rightarrow$ $V(J_2)$ is not Zariski closure since $I'm (\varphi) \subset V (x^2y - z^2)$. * Need to remove $V(z)...$ ### 51 **General Set up:** $x_1 = \frac{f_1 (t_1, ..., t_m )}{{g_1 (t_1, ..., t_m )}}$ $\vdots$ $x_n = \frac{f_n (t_1, ..., t_m )}{{g_n (t_1, ..., t_m )}}$ Where $f_i, g_i, ..., f_n, gn \in \mathbb{K}[t_1, ..., t_m ]$ The map $\varphi :$ can not be defined on all of $\mathbb{K}^m$ since denominators cant be zero! **=>** have map $\varphi : \mathbb{K}^m / W \rightarrow \mathbb{K}^{n}$ $\varphi :( t_1, ..., t_m ) \mapsto ( \frac{f_1 (t_1, ..., t_m )}{g_1 (t_1, ..., t_m )},...,. \frac{f_n (t_1, ..., t_m )}{g_n (t_1, ..., t_m )})$ Where $W=V(g_1 g_2 ... g_n) \subset \mathbb{K}^{m}$ **Rational implicitization problem Find the smallest variety of $\mathbb{K}^{n}$ contiuing $\psi(\mathbb{K}^m /W)$** Adapt our maps: $\mathbb{K}^m / W \overset{\iota}{\longrightarrow} \mathbb{K}^{n+m}$ $\qquad \searrow \swarrow \pi_m$ $\qquad \qquad \mathbb{K}^n$ **Note** $i(\mathbb{K}^m / W ) \subset V(I)$, Where I is the ideal from clearing denominators** Add extra dimension to avoid vanishing denominators!: $G = G_1 ... G_n$ $J= \rangle g_1 ... g_n x_1- f_1..... G x_2- f_2, 1- gy \rangle \subset \mathbb{K}[y,t_t;t1...n ]$**(->) 1-gy => denominators do not vanish on V(J) !!** ### 52 Now have maps $\mathbb{K}^{n+m}$ $\qquad\searrow \nearrow \pi{m+1}$ $\mathbb{K}^{n} \rightarrow K^{n+m-1}$ Where $J:\mathbb{k}^{m}/{W} ➡️ Z^{m+} $\varphi (t_i ... t_m) ➡️ < ... \frac{H (t_k ... t_m)}{G ((t_i ... t_m)}$ Again we have $\phi = H + 1.0 * Then =3: Y = *^M +1 (0 => => G_ (ty =. Clain Prooh $2 (2M /N)$ $ 1+ 3m -G(t,....t_mX=F(T,.........1, 4 M7 => This implies 214,..... T_M22 =>-7, CAN 217 T0M2 Simce J=4 g(721 , From, 2 =.1 +102 and ( ( 27 (V) C V3 4(2M)= 22x+1(C V 3=M+(V3 IM (Y ) a WE IS Projection The Couse, 22N3 and Foun >T 1-7 the elinirnation Cousore theorens to Prove the fallowing ### 53 **Theorem (Rational Implicitization)** Let $\mathbb{K}$ be an infinite field, $\Psi : \mathbb{K}^m / W \to \mathbb{K}^n$ a rational parametrization above, and $J = \langle g, x-f, g-fn, gy-1\rangle c 214, where " = 44 , Then for " = , "41 (3), VC +1) is The Saallest alline Variety ertaining 444) Prool ( Exeries) Set on Analagus olf 9 soling the iuplicitization problew Example Canhinuiong Our Seall exaugle with neu Varicble We Sat = > ex > 24] s = Ja 24 "9,3 ]==22) * Vix"9-30 The Zamishti lasure of as expected! (Removed component Z) A subtlety haring = = we houe e Where 4-4", y) the 4M M the Soue 11 "eally compited V3" ( ### 54 ( (40) The lagis that will (4apually, a =2"M =U2 = 44. 2", that Cg(7) has Dimausia as 447 Then 470 S This aus=4""4-4,4 This will to apually herben for ss, sa dou't hory and sust ### **Exponential Familes** ##### 56 ## We now possess the Theory we Polyngmial Constraints and Camputahnal "ools Defining statistical * Cur model "algebrani statistical " "ealu" to Extract Models statistical - That admets Meaning soun "Models" Semialjebrate " " " 11 **+ to Suild up Cur Famaly of Cseuialgetrain statisticols * " W will start wr Th Exponential Foumilis*" Enponention Faniles are themost Commonly Studed / used statistical "Models"" EX A * * +Multivanate Morunal distributions* * +Multinourial Distobuhong+ + = Paison " - Cound Beta " Theit + + Tons, the the" the Foumilies have Enponational "2+22/6. Ex Erodent Desentt" (Gared "the ### (3):2=***K . &2 *771 1-20 is finite but it is & Finite beau > "11 24 (a) - "3+ the e a. - 6) + 1 V: 46 **=*** the - 1-20 is d 10 ### **&**7,4 53 is : * .T *the **44/ =L & e "the C 49,23) <2 the , --- ### **&**1 " &+ + " " 4& a "M +++ (94 " # **"'"'" " ```

Use Quizgecko on...
Browser
Browser