Introduction aux Instruments et Méthodes en Topographie PDF 2024-2025
Document Details
Uploaded by Deleted User
2024
Tags
Summary
Ce document est un cours sur les instruments et méthodes en topographie. Il contient des définitions sur la topographie, la géodésie, et la topométrie, ainsi que la cartographie. Le document discute également des erreurs et de méthodes de calcul.
Full Transcript
Cours d’Instruments et méthodes – Introduction 2024-2025 Introduction aux Instruments et Méthodes en Topographie I. Définitions et généralités i. Topographie Etymologie : du grec topos = lieu et graphein = des...
Cours d’Instruments et méthodes – Introduction 2024-2025 Introduction aux Instruments et Méthodes en Topographie I. Définitions et généralités i. Topographie Etymologie : du grec topos = lieu et graphein = dessiner La topographie regroupe les sciences et les techniques qui ont pour objectif la mesure et la représentation en 2D, 3D, 4D de tout objet. Les objectifs : - Fournir la situation exacte des lieux : Etablissement de plans, de cartes, de modèles 3D, de maquettes numériques - Intégrer des projets d’aménagements dans la représentation de l’existant - Positionner et ausculter des ouvrages : Implantations des futurs ouvrages et détections de mouvements dans des structures naturelles ou artificielles - Structurer, traiter, analyser, gérer et représenter tous les types de données spatiales et géographiques : Système d’Information Géographique (SIG) ii. Géodésie La géodésie est la science qui a pour objet la définition des formes générales de la Terre. Elle intervient en amont des travaux de cartographie, télédétection, du génie civil et de la navigation terrestre et spatiale. On peut la diviser en : - Géodésie fondamentale : détermination des formes exactes et des déformations de la Terre ; - Géodésie pratique et utilitaire : détermination relative d’un ensemble de points géodésiques servant d’appui aux levés de détails (canevas d’appui). iii. Topométrie La topométrie regroupe l’ensemble des techniques permettant d’obtenir les éléments métriques indispensables à la réalisation d'un plan à grande ou très grande échelle. Ces éléments nécessitent différentes mesures sur le terrain (angles en grades et distances), suivies de nombreux calculs, schémas et croquis. On distingue la planimétrie et l’altimétrie : - La planimétrie est la représentation en projection plane de l’ensemble des détails à deux dimensions du plan topographique → X, Y - L’altimétrie est la représentation du relief sur un plan ou une carte. → Z 1 Cours d’Instruments et méthodes – Introduction 2024-2025 Exemples de techniques employées : - Triangulation (utilisation de deux angles et une distance) - Trilatération ou multilatération (utilisation de distances) - Polygonation (mesure d’angles et de distances) iv. Cartographie C’est l’ensemble des opérations nécessaires au dessin et à l’édition de cartes et de plans. ➔ Un plan topographique fera figurer l’altitude tandis qu’un plan planimétrique se limitera à (X, Y). ➔ L’échelle d’un plan conditionne la précision, les modes opératoires et surtout les détails contenus dans un plan. v. Calcul d’erreurs Les résultats issus d’observations, de calculs, de reports sont toujours différents des résultats théoriques. Ils sont entachés d’inexactitudes inhérentes à chaque opération. Il est important en topographie de : - Quantifier ces erreurs et déterminer leur influence sur les résultats - Mettre au point des techniques et des modes opératoires pour les minimiser Classification des erreurs : - Fautes : erreurs grossières provenant de l’inattention ou de l’oubli de l’opérateur ; pour déceler les fautes, on pratique des contrôles. - Erreurs systématiques : petits écarts entre valeur théorique et valeur effective d’une grandeur mesurée qui ont une cause permanente et assignable. Ces écarts sont de signe constant. - Erreurs accidentelles : petits écarts entre valeur théorique et valeur effective d’une grandeur mesurée qui ont une cause non permanente. Ces écarts sont variables en grandeur et en signe. II. Forme réelle de la Terre et représentation plane i. Le géoide Le géoïde est la forme réelle de la Terre. C’est la surface normale en tout point de la Terre avec la verticale du lieu et coïncidant avec le niveau moyen des mers. C’est aussi la surface équipotentielle de pesanteur et cela correspond conventionnellement à l’altitude 0. Cependant, le géoïde est une surface complexe à laquelle on ne sait pas appliquer des relations mathématiques. 2 Cours d’Instruments et méthodes – Introduction 2024-2025 ii. L’ellipsoïde de révolution L’étude des variations du rayon de courbure des méridiens a permis de conclure que le volume le plus proche du géoïde est un ellipsoïde de révolution tournant autour de son petit axe. L’aplatissement est d’environ 1/300, soit environ 21km. Il y a l’ellipsoïde global et l’ellipsoïde local. L’ondulation du géoïde, N, est la distance entre l’ellipsoïde et la surface du géoïde. Remarque : on peut aussi utiliser une sphère moyenne : - Sphère générale : R = 6371 km - Sphère utilisée en France : R = 6378 km 3 Cours d’Instruments et méthodes – Introduction 2024-2025 iii. Assimilation à un plan Pour des « petites » surfaces, on peut assimiler le géoïde à un plan (dans un rayon de 10km) → Le parallélisme des verticales est valable. On peut assimiler le géoïde à un plan mais il faut tenir compte de la dépression des horizons pour l’altitude. iv. D’une surface courbe à une surface plane Afin de transformer une surface courbe en une surface plane un système de projection est nécessaire. Les projections peuvent avoir diverses propriétés : - Projection équivalente : conserve localement les surfaces - Projection conforme : conserve localement les angles et donc les formes - Projection aphylactique : elle n’est ni conforme, ni équivalente, mais elle peut être équidistante, c’est-à-dire conserver les distances sur les méridiens. Une carte ne peut pas être obtenue simplement en écrasant une sphère. La projection passe généralement par la représentation de la totalité ou une partie de l'ellipsoïde sur une surface développable (surface qui peut être étalée sans déformation sur un plan). Le plan, le cylindre et le cône sont trois formes mathématiques courantes qui donnent lieu aux trois principaux types de projections : - Projection conique - Projection cylindrique - Projection azimutale 4 Cours d’Instruments et méthodes – Introduction 2024-2025 En France, des projections coniques conformes sécantes sont utilisées : Projections Lambert 4 Zones, 1922 : la France est découpée en 4 zones. Les projections sont associées au système géodésique NTF (Nouvelle triangulation de la France) Projection Lambert 1993 : projection liée au système géodésique RGF93 (Réseau géodésique français) Projections Lambert Zone CC : 9 projections coniques conformes sécantes couvrant 9 zones du nord au sud introduites pour réduire fortement l'altération linéaire induite par la grande largeur de la zone d’application du Lambert-93, système géodésique RGF93. III. Processus général de l’élaboration d’un plan 5 Cours d’Instruments et méthodes – Introduction 2024-2025 i. Saisie des éléments sur le terrain La grande majorité des mesures se fait au tachéomètre. Les systèmes GNSS et le scanner laser sont également employés par les topographes. Avec le tachéomètre, on saisit des distances et des angles relatifs à des objets. Les éléments peuvent être saisis, notés sur papier ou le levé peut être géocodé. Les distances et angles horizontaux servent à la détermination de la planimétrie tandis que les distances inclinées et les angles verticaux servent à la détermination de l’altimétrie. ii. Calcul des éléments de représentation On cherche à déterminer un ensemble cohérent de points. Les coordonnées sont de la forme (X, Y, Z) ou bien (E, N, H). La hiérarchie générale des calculs est la suivante : - Astronomie géodésique → IGN - Géodésie, triangulation (VLBI : Very Long Baseline Interferometry, GNSS) → IGN - Triangulation complémentaire (GNSS) → cadastre - Calcul de polygonation - Calcul de points de détail iii. Dessin de la représentation Le plan intervient à différents moments dans un projet : - Avant la réalisation du projet, établissement d’un plan d’étude - Établissement d’un plan d’implantation pour implanter le projet - Après la réalisation du projet, établissement d’un plan de récolement IV. Principaux instruments de mesure i. Le niveau Définition : Un niveau, qu’il soit optique ou électronique, est un instrument qui permet d’effectuer des visées horizontales (V) dans toutes les directions (par rotation autour de R, 6 Cours d’Instruments et méthodes – Introduction 2024-2025 donc V décrit un plan horizontal). La position horizontale de l’axe de visée d’une lunette s’obtient à l’aide d’un système de calage et d’une nivelle. Nivellement direct ou géométrique : Il consiste à mesurer la différence d’altitude à partir de visées horizontales. Cette opération s’effectue à l’aide d’un niveau et d’une mire tenue verticalement. Mode de nivellement le plus précis : 1 mm à 20 mm/km (≠ du nivellement indirect de précision 1 à 10 cm/km) Soient A et B deux points. Pour déterminer la différence de niveau entre ces points on place un niveau entre ceux-ci et on effectue des visées horizontales sur une mire dressée en A puis en B. ➔ Le nivellement par rayonnement Lorsque les points sont tous à la portée d’une station d'appareil, on peut procéder par rayonnement. 7 Cours d’Instruments et méthodes – Introduction 2024-2025 ➔ Nivellement par cheminement Lorsque deux points sont trop distants ou que la différence d’altitude est trop grande pour réaliser directement une visée horizontale sur la mire, on effectue un nivellement par cheminement. Lorsqu’on part d’un point A connu en altitude pour arriver à un point B d’altitude connue en passant par des points dont on veut déterminer l’altitude, on parle de cheminement inséré. Le cheminement est contrôlé par comparaison de la dénivelée théorique et effective (fermeture altimétrique 𝒇𝒂 ). Si |𝑓𝑎 | > |𝑇| alors retour sur le terrain Si |𝑓𝑎 | < |𝑇| alors répartition sur les différentes dénivelées ii. Le théodolite Définition : Le théodolite est un appareil destiné à mesurer des angles horizontaux et verticaux. Il est souvent placé sur un trépied, et à la verticale exacte d’un point connu. Il est composé : - D’une lunette topographique qui peut basculer autour - D’un axe horizontal (axe des tourillons), - D’un axe de rotation vertical - D’un système de calage et des nivelles 8 Cours d’Instruments et méthodes – Introduction 2024-2025 Le théodolite est un instrument de mesure géodésique. Les opérations géodésiques sont fondées à l'origine sur la triangulation qui consiste à déterminer la distance de deux points donnés à la surface de la Terre à l'aide d'une suite de triangles dont on mesure les angles et que l'on résout de proche en proche. → Avantage : mesure d’un seul côté d’un triangle et mesure d’angles sujettes à des erreurs bien moindres ➔ Mesure d’angles azimutaux : le relèvement Un point relevé M est un point stationné dont on cherche à déterminer les coordonnées et depuis lequel on vise plusieurs références connues. L’intérêt de cette technique est d’obtenir les coordonnées du point M en n’effectuant qu’une seule station uniquement avec des mesures angulaires. ➔ Mesure d’angles horizontaux et verticaux : détermination d’un point inaccessible La méthode utilise simultanément le procédé du levé par intersection (planimétrie) et celui du nivellement trigonométrique (altimétrie). ➔ Mesures en astronomie Le théodolite est également utilisé en astronomie. Il sert à déterminer l’azimut par rapport au pôle céleste et la hauteur apparente d’un corps céleste par rapport à l’horizon. iii. Le tachéomètre Définition : le tachéomètre est un appareil capable de mesurer : - Angle horizontal de la lunette par rapport à une ligne de référence - Angle zénithal de la lunette par rapport à l’axe verticale et l’angle vertical de la lunette par rapport au plan horizontal - Distance inclinée i.e. mesurée suivant la pente de l’axe de visée. Dispose d’un carnet électronique dans lequel les mesures sont enregistrées 9 Cours d’Instruments et méthodes – Introduction 2024-2025 Permet de déterminer les coordonnées sphériques des points mesurés et peut les convertir en coordonnées cylindriques ou cartésiennes Très souvent positionné à la verticale d’un point connu ➔ Mesure de la distance inclinée Un télémètre intégré dans le tachéomètre permet d’effectuer les mesures de distances. La mesure se fait à l'aide d'un prisme réflecteur, placé à la verticale du point que l'on souhaite mesurer. L'utilisation d'un système laser permet aussi d'effectuer une mesure de distance sans réflecteur. ➔ Cheminement polygonal Cheminement planimétrique, c’est-à-dire des lignes brisées parcourues en mesurant les angles et les longueurs des côtés pour ensuite déterminer les coordonnées des sommets Les différents types de cheminements : - Cheminement encadré : lorsque les coordonnées du point de départ et d'arrivée sont connues ; - Cheminement en antenne : lorsque seules les coordonnées du point de départ sont connues ; - Cheminement fermé : lorsque les points de départ et d'arrivée sont confondus. ➔ Levé de points de détail (par rayonnement) Il y a d’autres application : l’implantation, la station libre, la ligne/arc de référence, le calcul de surfaces/volumes, l’altitude inaccessible, les intersections, le décalage, le prolongement, etc. 10 Cours d’Instruments et méthodes – Introduction 2024-2025 iv. Le scanner laser Définition : Le scanner laser mesure au même titre que le tachéomètre une distance à l’objet impacté, ainsi que l’angle horizontal et vertical. Les coordonnées sphériques (d, φ, Ө) de chaque point sont définies dans un repère ayant pour origine le centre du scanner laser. Le balayage laser est une technique d’acquisition utilisant la lumière laser et permettant de mesurer, de manière rapide et sans contact, un objet selon une trame régulière de points. Elle fournit les coordonnées tridimensionnelles des points décrivant les surfaces présentes dans la scène considérée. L’ensemble de ces points est appelé nuage de points. ➔ Scanner laser vs. Tachéométrie Contrairement aux méthodes de topographie conventionnelles (tachéométrie, GNSS, nivellement direct), l’acquisition signifie le balayage de surfaces entières, au lieu de l’acquisition de points individuels. ➔ Densité de points La densité de points se réfère au nombre de points acquis par unité de surface à distance d’objet fixe. 11 Cours d’Instruments et méthodes – Introduction 2024-2025 ➔ Intensité et couleur du nuage de points ➔ Consolidation Cela consiste à regrouper plusieurs balayages dans un même système de coordonnées (à partir de cibles ou à partir des nuages de points). ➔ Géoréférencement Processus visant à transformer des coordonnées locales en un système de coordonnées général préexistant. Nécessaire si les données numérisées doivent être liées à d'autres données. Deux approches principales : - Géoréférencement direct - Géoréférencement indirect 12 Cours d’Instruments et méthodes – Introduction 2024-2025 ➔ Balayage laser terrestre Exemples de systèmes de balayage laser dynamique : - Mobile Mapping System (MMS) : Optech LYNX Mobile Mapper (scanner laser/GPS + centrale inertielle/scanner laser/appareil photo numérique) - Indoor Mobile Mapping System (IMMS) : NavVis M6 ; Handheld scanner, ZEB-REVO (Geoslam) - Scanner à main : FARO Freestyle 3D ➔ Balayage laser aérien Système monté sous un avion, un hélicoptère ou un drone Position et hauteur de vol + assiette de l’avion mesurées à l’aide de la technologie GPS/centrale inertielle (IMU) Portée et angle de balayage au sol mesurés par le scanner laser → Il y a différentes applications possibles : - Réalisation de plans de villes, de façades et d’étages - Modélisation 3D de villes et de bâtiments - Documentation du patrimoine - Immersion en réalité virtuelle v. GNNS (Global Navigation Satellite System) Définition et principe : On appelle GNSS (Global Navigation Satellite System, pour système global de positionnement par satellites) les systèmes de positionnement basés sur des signaux émis par des satellites en orbite autour de la Terre et fournissant une couverture mondiale. Les satellites émettent en direction de la Terre des ondes électromagnétiques qui se propagent à la vitesse de la lumière. Le récepteur sur Terre permet des mesures de distances. A partir des distances récepteur-satellites déterminées, un calcul de multilatération permet de déterminer la position du récepteur. Pour un positionnement absolu par GNSS, 4 inconnues doivent être déterminées : 13 Cours d’Instruments et méthodes – Introduction 2024-2025 - Trois inconnues de position, (X, Y, Z) dans un repère géocentrique, lié à un système de référence propre au GNSS ; - Une inconnue de temps liée à la désynchronisation du récepteur avec le temps GNSS. Jusqu'en 2007, seul le GPS (États-Unis) constituait un GNSS opérationnel. Depuis, Glonass (Russie) est arrivé lui aussi en phase opérationnelle. Deux autres systèmes sont en cours de développement et devraient être complètement opérationnels en 2020 : Galileo (Union Européenne) et le chinois Compass/Beidou. ➔ Erreurs sur les mesures GNSS Erreurs liées aux satellites : - Orbite et horloges des satellites ; - Effets relativistes ; - Centre de phase des satellites. Erreurs liées à la propagation : - Retard ionosphérique - Retard troposphérique Erreurs liées à la station : - Les multitrajets - Les masques - Le centre de phase de l’antenne ➔ Positionnement absolu ou ponctuel L’utilisation d’un seul récepteur permet un positionnement absolu, ce qui est suffisant dans les domaines d’application concernant la navigation et la connaissance d’une position géographique approchée. L’avantage est l’obtention d’une position de manière instantanée. L’exactitude du positionnement est de l’ordre de 5 à 20 m. 14 Cours d’Instruments et méthodes – Introduction 2024-2025 ➔ Positionnement relatif ou différentiel C'est le mode de positionnement le plus précis car il permet d'éliminer les erreurs systématiques en réalisant des différences d'observation entre des stations. La technique de localisation différentielle consiste à employer deux ou plusieurs récepteurs. Le vecteur séparant l’antenne de position inconnue et une ou plusieurs stations de référence est estimé. L’antenne est ainsi positionnée dans le même référentiel que les stations de référence. Cette technique permet un positionnement d’une précision centimétrique. → Le positionnement différentiel est utilisé pour les travaux géodésiques et topographiques. ➔ Modes de positionnement – Synthèse : vi. Autres ➔ Photogrammétrie La photogrammétrie est une technique de reconstruction numérique en 3D d’un objet physique utilisant des photos de la scène. Domaines d’application : photogrammétrie aérienne, photogrammétrie terrestre, photogrammétrie aquatique. ➔ Photogrammétrie vs. Lasergrammétrie 15 Cours d’Instruments et méthodes – Introduction 2024-2025 ➔ Imagerie satellite L'imagerie satellite ou satellitaire désigne la prise d'images de la Terre ou d'autres planètes à partir de satellites artificiels. De très nombreux usages : - Météorologie - Evaluation et surveillance de l’environnement - Archéologie - Aménagement du territoire, cartographie - Suivi de l’usage des sols - Etc. 16