Variations TD01 - Première - Exam Paper PDF
Document Details
Uploaded by EnthralledDidgeridoo659
2025
Tags
Summary
This document is a first-year French mathematics past paper, focusing on the topic of variations of functions. The paper includes exercises involving graphs, tables of signs, and calculating derivatives to find intervals of increase/decrease.
Full Transcript
Première Variations TD01 TD Variations TD01 Courbes et tableaux de v...
Première Variations TD01 TD Variations TD01 Courbes et tableaux de variations Exercice 1 On considère la fonction h, définie et dérivable sur [−3 ; 2]. 1. En vous aidant des courbes de h (en bleu) et de h0 (en rouge), dressez : (a) le tableau de signes de h0 (b) le tableau de variations de h 2. En déduire le tableau de variations complet de h. y 15 y 4 12 3 9 2 6 1 3 0 0 −4 −3 −2 −1 0 1 2 3 x −4 −3 −2 −1 0 1 2 3 x −1 −3 −2 −6 −9 Exercice 2 f et g sont deux fonctions dérivables sur R, et on connaît les tableaux de signes des dérivées f 0 et g 0 : x −∞ -2 2 +∞ x −∞ 1 +∞ 0 0 f (x) − 0 + 0 − g (x) + 0 − En déduire le sens de variation des fonctions f et g (phrases). x3 Exercice 3 On considère la fonction p : x 7−→ + x2 − 3x + 1, définie et dérivable sur [−3 ; 2]. 3 La courbe de p0 étant représentée ci-dessous, complètez le tableau de variations de p. Jv 2025 1 [email protected] Première Variations TD01 TD y 6 4 2 0 −4 −3 −2 −1 0 1 2 3 x x −2 p0 (x) p −4 x3 Exercice 4 On reprend la fonction p : x 7−→ + x2 − 3x + 1 de l’exercice 3. Elle est définie et dérivable sur [−3 ; 2]. 3 1. Déterminez p0 (x) pour tout x de [−3 ; 2]. 2. Résolvez l’équation p0 (x) = 0 pour x ∈ [−3 ; 2]. En déduire le tableau de variations complet de p. x4 Exercice 5 On considère la fonction m : x 7−→ − 2x2 − 1, définie et dérivable sur R. 4 1. Montrez que pour tout x de R, m0 (x) = x(x − 2)(x + 2). 2. Déterminez le signe de m0 (x) au moyen d’un tableau de signes. 3. En déduire le tableau de variations de la fonction m. (Vous ne pourrez pas donner les extrémités des flèches en en −∞ et en +∞). 4. En déduire une allure possible de la courbe de m. Jv 2025 2 [email protected]