11th Physics Class Notes PDF
Document Details
Uploaded by PopularSpruce
Tags
Summary
These notes cover the topic of kinematics and integration in physics, specifically focusing on equations of motion and solving integration problems.
Full Transcript
### First Equation $V = U + at$ Assume an object moving in a straight line along the *x-axis* with a constant acceleration of *a*. * *U* - initial velocity * *V* - final velocity * *t* - time taken The object covers a distance of *S* in *t* seconds, starting at point *0* and reaching poin...
### First Equation $V = U + at$ Assume an object moving in a straight line along the *x-axis* with a constant acceleration of *a*. * *U* - initial velocity * *V* - final velocity * *t* - time taken The object covers a distance of *S* in *t* seconds, starting at point *0* and reaching point *A*. Based on the definition of acceleration, we have: $a = \frac{dv}{dt}$ $\implies dv = a.dt$ Integrating both sides: $\int_{V_1}^{V_2} dv = \int_{t_1}^{t_2} a. dt$ $\implies [V]_{V_1}^{V_2} = a [t]_{t_1}^{t_2}$ $\implies V_2 - V_1 = a \times (t_2 - t_1)$ $\implies V - U = a \times (t - 0)$ $\implies V - U = at$ $\implies V = U + at$ ### Integration #### Indefinite Integration $\int a.x^n dx = a \times \frac{x^{n+1}}{n+1} + c$ #### Definite Integration $\int_{x_1}^{x_2} a.x^n dx = a \times [\frac{x^{n+1}}{n+1}]_{x_1}^{x_2}$ $= a \times (\frac{ x_2^{n+1}}{n+1} - \frac{x_1^{n+1}}{n+1})$ #### Examples of Integration $\int dx = x$ $\int dt = t$ $\int dv = v$ $\int_{2}^{10} dx = [x]_{2}^{10}$ $= 10 - 2 = 8A$ $\int_{t_1}^{t_2} dt = [t]_{t_1}^{t_2}$ $= (t_2 - t_1)$ $\int_5^6 x^4 dx$ $= 5 \times \frac{x^{4+1}}{4+1}|_5^6$ $= 5 \times \frac{x^5}{5}|_5^6$ $= x^5|_5^6$ $= 6^5 - 5^5$ $\int_2^{10} 2. x dx$ $= 2 \times [\frac{x^{1+1}}{1+1}]_2^{10}$ $= 2 \times [\frac{x^2}{2}]_2^{10}$ $= (10^2 - 2^2)$ $= 100 - 4 = 96$