y^2 - 4x, y - 3 से क्षेत्र क्षेत्रफल है। P(A) = 0.8, P(B) = 0.5 और P(A ∩ B) = 0.4। P(A ∩ B) ज्ञात कीजिए। क्या 2 सहायक चक्रों के योग से 5 आने की संभावना है। दो सूची एक साथ घुमाई... y^2 - 4x, y - 3 से क्षेत्र क्षेत्रफल है। P(A) = 0.8, P(B) = 0.5 और P(A ∩ B) = 0.4। P(A ∩ B) ज्ञात कीजिए। क्या 2 सहायक चक्रों के योग से 5 आने की संभावना है। दो सूची एक साथ घुमाई गई हैं। एक परिवार में दो बच्चे हैं। एक कच्चा क्षेत्र का क्षेत्रफल, जब उसकी त्रिज्या r cm = 6 है, का परिवर्तन की दर है।
Understand the Problem
प्रश्न जियोमेट्री और संभाव्यता से जुड़ी गणनाओं के बारे में है, जिसमें कुछ विशेष क्षेत्रों का क्षेत्रफल और संभावनाओं की गणना की जानी है।
Answer
The area is $\frac{9}{8}$.
Answer for screen readers
The area of the region bounded by the curve ( y = 4x ), ( y = 3 ), the y-axis, and the line ( y = 3 ) is $\frac{9}{8}$.
Steps to Solve
- Identify the area under the curve To find the area of the region bounded by the curve ( y = 4x ), ( y = 3 ), the y-axis, and the line ( y = 3 ), we first need to determine the intersection points of these lines.
Set ( y = 4x ) equal to ( y = 3 ):
$$ 3 = 4x $$
Solving for ( x ):
$$ x = \frac{3}{4} $$
The region will be bounded between ( x = 0 ) and ( x = \frac{3}{4} ).
- Set up the integral to find the area The area ( A ) can be calculated using the integral from ( 0 ) to ( \frac{3}{4} ):
$$ A = \int_{0}^{\frac{3}{4}} (3 - 4x) , dx $$
Here, ( 3 ) is the upper line and ( 4x ) is the lower line.
- Calculate the integral Computing the integral:
$$ A = \left[ 3x - 2x^2 \right]_{0}^{\frac{3}{4}} $$
Evaluate at the bounds:
$$ A = \left( 3 \times \frac{3}{4} - 2 \left(\frac{3}{4}\right)^2 \right) - (0) $$
- Final calculations Now perform the calculations step-by-step;
$$ = \left( \frac{9}{4} - 2 \times \frac{9}{16} \right) $$
$$ = \left( \frac{9}{4} - \frac{18}{16} \right) = \left( \frac{9}{4} - \frac{9}{8} \right) $$
Converting to a common denominator:
$$ = \frac{18}{8} - \frac{9}{8} = \frac{9}{8} $$
So the area is:
$$ A = \frac{9}{8} $$
The area of the region bounded by the curve ( y = 4x ), ( y = 3 ), the y-axis, and the line ( y = 3 ) is $\frac{9}{8}$.
More Information
This area calculation involves finding the bounded region between two curves and is a common calculation in both calculus and geometry. The process of setting up the integral is critical for finding areas under curves.
Tips
- Confusing the upper and lower curves when setting up the integral.
- Not accurately calculating the intersection points, which can lead to integrating over the wrong intervals.
AI-generated content may contain errors. Please verify critical information