What is the analysis of the angles θ = 120° and θ = 135°?

Question image

Understand the Problem

The question presents two angles, θ = 120° and θ = 135°, likely asking for some analysis or calculation involving these angles, possibly in relation to trigonometric functions or geometric properties.

Answer

- For \( \theta = 120^\circ \): \( \sin(120^\circ) = \frac{\sqrt{3}}{2}, \cos(120^\circ) = -\frac{1}{2}, \tan(120^\circ) = -\sqrt{3} \) - For \( \theta = 135^\circ \): \( \sin(135^\circ) = \frac{\sqrt{2}}{2}, \cos(135^\circ) = -\frac{\sqrt{2}}{2}, \tan(135^\circ) = -1 \)
Answer for screen readers
  • For ( \theta = 120^\circ ):

    • ( \sin(120^\circ) = \frac{\sqrt{3}}{2} )
    • ( \cos(120^\circ) = -\frac{1}{2} )
    • ( \tan(120^\circ) = -\sqrt{3} )
  • For ( \theta = 135^\circ ):

    • ( \sin(135^\circ) = \frac{\sqrt{2}}{2} )
    • ( \cos(135^\circ) = -\frac{\sqrt{2}}{2} )
    • ( \tan(135^\circ) = -1 )

Steps to Solve

  1. Identify Trigonometric Functions for Each Angle

    We will calculate the sine, cosine, and tangent for both angles.

  2. Calculate Trigonometric Values for θ = 120°

    For the angle ( \theta = 120^\circ ):

    • The sine is given by: $$ \sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2} $$
    • The cosine is: $$ \cos(120^\circ) = -\cos(60^\circ) = -\frac{1}{2} $$
    • The tangent is: $$ \tan(120^\circ) = \frac{\sin(120^\circ)}{\cos(120^\circ)} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3} $$
  3. Calculate Trigonometric Values for θ = 135°

    For the angle ( \theta = 135^\circ ):

    • The sine is: $$ \sin(135^\circ) = \sin(180^\circ - 45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2} $$
    • The cosine is: $$ \cos(135^\circ) = -\cos(45^\circ) = -\frac{\sqrt{2}}{2} $$
    • The tangent is: $$ \tan(135^\circ) = \frac{\sin(135^\circ)}{\cos(135^\circ)} = \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = -1 $$
  • For ( \theta = 120^\circ ):

    • ( \sin(120^\circ) = \frac{\sqrt{3}}{2} )
    • ( \cos(120^\circ) = -\frac{1}{2} )
    • ( \tan(120^\circ) = -\sqrt{3} )
  • For ( \theta = 135^\circ ):

    • ( \sin(135^\circ) = \frac{\sqrt{2}}{2} )
    • ( \cos(135^\circ) = -\frac{\sqrt{2}}{2} )
    • ( \tan(135^\circ) = -1 )

More Information

The angles ( 120^\circ ) and ( 135^\circ ) are both found in the second quadrant of the unit circle, where sine values are positive, and cosine values are negative. This results in negative tangent values.

Tips

  • Confusing the signs of the trigonometric functions based on the quadrant.
  • Not using the appropriate reference angle when calculating the sine and cosine.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser